Reputation: 35696
I have a Pandas DataFrame like following:
A B C
0 192.168.2.85 192.168.2.85 124.43.113.22
1 192.248.8.183 192.248.8.183 192.168.2.85
2 192.168.2.161 NaN 192.248.8.183
3 66.249.74.52 NaN 192.168.2.161
4 NaN NaN 66.249.74.52
I want to get the count of a certain values across columns. So my expected output is something like:
IP Count
192.168.2.85 3 #Since this value is there in all coulmns
192.248.8.183 3
192.168.2.161 2
66.249.74.52 2
124.43.113.22 1
I know how to this across rows, but doing this for columns is bit strange?Help me to solve this? Thanks.
Upvotes: 23
Views: 27154
Reputation: 437
df['Counts'] = df[['col1','col2','col3']].groupby(['col1','col2','col3']).transform('count')
Upvotes: 2
Reputation: 93804
stack it first and then use value_counts:
In [14]: df.stack().value_counts()
Out[14]:
192.248.8.183 3
192.168.2.85 3
66.249.74.52 2
192.168.2.161 2
124.43.113.22 1
dtype: int64
Upvotes: 36