Reputation: 123
The current MATLAB based C implementation takes around 6ms
for solving Ax=B
, where A
is banded sparse matrix with band-width 3
of dimensions 780 X 780
.
Now I am looking to use cuBLAS
/cuSPARSE
to find a faster solution.
I need to solve 1440
of such equations in a loop.
I tried using PCG based method but that is very slow and the output is not matching.
Is there any direct solution using cuBLAS
/cuSPARSE
for solving Ax=B
?
Upvotes: 3
Views: 4044
Reputation: 21495
This is a fully worked example on how using LU factorization to solve sparse linear systems in CUDA.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusparse_v2.h>
#include "Utilities.cuh"
cusparseHandle_t handle;
cusparseMatDescr_t descrA = 0;
cusparseMatDescr_t descr_L = 0;
cusparseMatDescr_t descr_U = 0;
csrilu02Info_t info_A = 0;
csrsv2Info_t info_L = 0;
csrsv2Info_t info_U = 0;
void *pBuffer = 0;
/*****************************/
/* SETUP DESCRIPTOR FUNCTION */
/*****************************/
void setUpDescriptor(cusparseMatDescr_t &descrA, cusparseMatrixType_t matrixType, cusparseIndexBase_t indexBase) {
cusparseSafeCall(cusparseCreateMatDescr(&descrA));
cusparseSafeCall(cusparseSetMatType(descrA, matrixType));
cusparseSafeCall(cusparseSetMatIndexBase(descrA, indexBase));
}
/**************************************************/
/* SETUP DESCRIPTOR FUNCTION FOR LU DECOMPOSITION */
/**************************************************/
void setUpDescriptorLU(cusparseMatDescr_t &descrLU, cusparseMatrixType_t matrixType, cusparseIndexBase_t indexBase, cusparseFillMode_t fillMode, cusparseDiagType_t diagType) {
cusparseSafeCall(cusparseCreateMatDescr(&descrLU));
cusparseSafeCall(cusparseSetMatType(descrLU, matrixType));
cusparseSafeCall(cusparseSetMatIndexBase(descrLU, indexBase));
cusparseSafeCall(cusparseSetMatFillMode(descrLU, fillMode));
cusparseSafeCall(cusparseSetMatDiagType(descrLU, diagType));
}
/**********************************************/
/* MEMORY QUERY FUNCTION FOR LU DECOMPOSITION */
/**********************************************/
void memoryQueryLU(csrilu02Info_t &info_A, csrsv2Info_t &info_L, csrsv2Info_t &info_U, cusparseHandle_t handle, const int N, const int nnz, cusparseMatDescr_t descrA, cusparseMatDescr_t descr_L,
cusparseMatDescr_t descr_U, double *d_A, int *d_A_RowIndices, int *d_A_ColIndices, cusparseOperation_t matrixOperation, void **pBuffer) {
cusparseSafeCall(cusparseCreateCsrilu02Info(&info_A));
cusparseSafeCall(cusparseCreateCsrsv2Info(&info_L));
cusparseSafeCall(cusparseCreateCsrsv2Info(&info_U));
int pBufferSize_M, pBufferSize_L, pBufferSize_U;
cusparseSafeCall(cusparseDcsrilu02_bufferSize(handle, N, nnz, descrA, d_A, d_A_RowIndices, d_A_ColIndices, info_A, &pBufferSize_M));
cusparseSafeCall(cusparseDcsrsv2_bufferSize(handle, matrixOperation, N, nnz, descr_L, d_A, d_A_RowIndices, d_A_ColIndices, info_L, &pBufferSize_L));
cusparseSafeCall(cusparseDcsrsv2_bufferSize(handle, matrixOperation, N, nnz, descr_U, d_A, d_A_RowIndices, d_A_ColIndices, info_U, &pBufferSize_U));
int pBufferSize = max(pBufferSize_M, max(pBufferSize_L, pBufferSize_U));
gpuErrchk(cudaMalloc((void**)pBuffer, pBufferSize));
}
/******************************************/
/* ANALYSIS FUNCTION FOR LU DECOMPOSITION */
/******************************************/
void analysisLUDecomposition(csrilu02Info_t &info_A, csrsv2Info_t &info_L, csrsv2Info_t &info_U, cusparseHandle_t handle, const int N, const int nnz, cusparseMatDescr_t descrA, cusparseMatDescr_t descr_L,
cusparseMatDescr_t descr_U, double *d_A, int *d_A_RowIndices, int *d_A_ColIndices, cusparseOperation_t matrixOperation, cusparseSolvePolicy_t solvePolicy1, cusparseSolvePolicy_t solvePolicy2, void *pBuffer) {
int structural_zero;
cusparseSafeCall(cusparseDcsrilu02_analysis(handle, N, nnz, descrA, d_A, d_A_RowIndices, d_A_ColIndices, info_A, solvePolicy1, pBuffer));
cusparseStatus_t status = cusparseXcsrilu02_zeroPivot(handle, info_A, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){ printf("A(%d,%d) is missing\n", structural_zero, structural_zero); }
cusparseSafeCall(cusparseDcsrsv2_analysis(handle, matrixOperation, N, nnz, descr_L, d_A, d_A_RowIndices, d_A_ColIndices, info_L, solvePolicy1, pBuffer));
cusparseSafeCall(cusparseDcsrsv2_analysis(handle, matrixOperation, N, nnz, descr_U, d_A, d_A_RowIndices, d_A_ColIndices, info_U, solvePolicy2, pBuffer));
}
/************************************************/
/* COMPUTE LU DECOMPOSITION FOR SPARSE MATRICES */
/************************************************/
void computeSparseLU(csrilu02Info_t &info_A, cusparseHandle_t handle, const int N, const int nnz, cusparseMatDescr_t descrA, double *d_A, int *d_A_RowIndices,
int *d_A_ColIndices, cusparseSolvePolicy_t solutionPolicy ,void *pBuffer) {
int numerical_zero;
cusparseSafeCall(cusparseDcsrilu02(handle, N, nnz, descrA, d_A, d_A_RowIndices, d_A_ColIndices, info_A, solutionPolicy, pBuffer));
cusparseStatus_t status = cusparseXcsrilu02_zeroPivot(handle, info_A, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){ printf("U(%d,%d) is zero\n", numerical_zero, numerical_zero); }
}
void solveSparseLinearSystem() {
}
/********/
/* MAIN */
/********/
int main()
{
// --- Initialize cuSPARSE
cusparseSafeCall(cusparseCreate(&handle));
/**************************/
/* SETTING UP THE PROBLEM */
/**************************/
const int Nrows = 4; // --- Number of rows
const int Ncols = 4; // --- Number of columns
const int N = Nrows;
// --- Host side dense matrix
double *h_A_dense = (double*)malloc(Nrows * Ncols * sizeof(*h_A_dense));
// --- Column-major ordering
h_A_dense[0] = 0.4612f; h_A_dense[4] = -0.0006f; h_A_dense[8] = 0.3566f; h_A_dense[12] = 0.0f;
h_A_dense[1] = -0.0006f; h_A_dense[5] = 0.4640f; h_A_dense[9] = 0.0723f; h_A_dense[13] = 0.0f;
h_A_dense[2] = 0.3566f; h_A_dense[6] = 0.0723f; h_A_dense[10] = 0.7543f; h_A_dense[14] = 0.0f;
h_A_dense[3] = 0.f; h_A_dense[7] = 0.0f; h_A_dense[11] = 0.0f; h_A_dense[15] = 0.1f;
// --- Create device array and copy host array to it
double *d_A_dense; gpuErrchk(cudaMalloc(&d_A_dense, Nrows * Ncols * sizeof(*d_A_dense)));
gpuErrchk(cudaMemcpy(d_A_dense, h_A_dense, Nrows * Ncols * sizeof(*d_A_dense), cudaMemcpyHostToDevice));
// --- Allocating and defining dense host and device data vectors
double *h_x = (double *)malloc(Nrows * sizeof(double));
h_x[0] = 100.0; h_x[1] = 200.0; h_x[2] = 400.0; h_x[3] = 500.0;
double *d_x; gpuErrchk(cudaMalloc(&d_x, Nrows * sizeof(double)));
gpuErrchk(cudaMemcpy(d_x, h_x, Nrows * sizeof(double), cudaMemcpyHostToDevice));
/*******************************/
/* FROM DENSE TO SPARSE MATRIX */
/*******************************/
// --- Descriptor for sparse matrix A
setUpDescriptor(descrA, CUSPARSE_MATRIX_TYPE_GENERAL, CUSPARSE_INDEX_BASE_ONE);
int nnz = 0; // --- Number of nonzero elements in dense matrix
const int lda = Nrows; // --- Leading dimension of dense matrix
// --- Device side number of nonzero elements per row
int *d_nnzPerVector; gpuErrchk(cudaMalloc(&d_nnzPerVector, Nrows * sizeof(*d_nnzPerVector)));
// --- Compute the number of nonzero elements per row and the total number of nonzero elements in the dense d_A_dense
cusparseSafeCall(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, &nnz));
// --- Host side number of nonzero elements per row
int *h_nnzPerVector = (int *)malloc(Nrows * sizeof(*h_nnzPerVector));
gpuErrchk(cudaMemcpy(h_nnzPerVector, d_nnzPerVector, Nrows * sizeof(*h_nnzPerVector), cudaMemcpyDeviceToHost));
printf("Number of nonzero elements in dense matrix = %i\n\n", nnz);
for (int i = 0; i < Nrows; ++i) printf("Number of nonzero elements in row %i = %i \n", i, h_nnzPerVector[i]);
printf("\n");
// --- Device side sparse matrix
double *d_A; gpuErrchk(cudaMalloc(&d_A, nnz * sizeof(*d_A)));
int *d_A_RowIndices; gpuErrchk(cudaMalloc(&d_A_RowIndices, (Nrows + 1) * sizeof(*d_A_RowIndices)));
int *d_A_ColIndices; gpuErrchk(cudaMalloc(&d_A_ColIndices, nnz * sizeof(*d_A_ColIndices)));
cusparseSafeCall(cusparseDdense2csr(handle, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, d_A, d_A_RowIndices, d_A_ColIndices));
// --- Host side sparse matrix
double *h_A = (double *)malloc(nnz * sizeof(*h_A));
int *h_A_RowIndices = (int *)malloc((Nrows + 1) * sizeof(*h_A_RowIndices));
int *h_A_ColIndices = (int *)malloc(nnz * sizeof(*h_A_ColIndices));
gpuErrchk(cudaMemcpy(h_A, d_A, nnz*sizeof(*h_A), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_RowIndices, d_A_RowIndices, (Nrows + 1) * sizeof(*h_A_RowIndices), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_ColIndices, d_A_ColIndices, nnz * sizeof(*h_A_ColIndices), cudaMemcpyDeviceToHost));
printf("\nOriginal matrix in CSR format\n\n");
for (int i = 0; i < nnz; ++i) printf("A[%i] = %.0f ", i, h_A[i]); printf("\n");
printf("\n");
for (int i = 0; i < (Nrows + 1); ++i) printf("h_A_RowIndices[%i] = %i \n", i, h_A_RowIndices[i]); printf("\n");
for (int i = 0; i < nnz; ++i) printf("h_A_ColIndices[%i] = %i \n", i, h_A_ColIndices[i]);
/******************************************/
/* STEP 1: CREATE DESCRIPTORS FOR L AND U */
/******************************************/
setUpDescriptorLU(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL, CUSPARSE_INDEX_BASE_ONE, CUSPARSE_FILL_MODE_LOWER, CUSPARSE_DIAG_TYPE_UNIT);
setUpDescriptorLU(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL, CUSPARSE_INDEX_BASE_ONE, CUSPARSE_FILL_MODE_UPPER, CUSPARSE_DIAG_TYPE_NON_UNIT);
/**************************************************************************************************/
/* STEP 2: QUERY HOW MUCH MEMORY USED IN LU FACTORIZATION AND THE TWO FOLLOWING SYSTEM INVERSIONS */
/**************************************************************************************************/
memoryQueryLU(info_A, info_L, info_U, handle, N, nnz, descrA, descr_L, descr_U, d_A, d_A_RowIndices, d_A_ColIndices, CUSPARSE_OPERATION_NON_TRANSPOSE, &pBuffer);
/************************************************************************************************/
/* STEP 3: ANALYZE THE THREE PROBLEMS: LU FACTORIZATION AND THE TWO FOLLOWING SYSTEM INVERSIONS */
/************************************************************************************************/
analysisLUDecomposition(info_A, info_L, info_U, handle, N, nnz, descrA, descr_L, descr_U, d_A, d_A_RowIndices, d_A_ColIndices, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_SOLVE_POLICY_NO_LEVEL,
CUSPARSE_SOLVE_POLICY_USE_LEVEL, pBuffer);
/************************************/
/* STEP 4: FACTORIZATION: A = L * U */
/************************************/
computeSparseLU(info_A, handle, N, nnz, descrA, d_A, d_A_RowIndices, d_A_ColIndices, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer);
/*********************/
/* STEP 5: L * z = x */
/*********************/
// --- Allocating the intermediate result vector
double *d_z; gpuErrchk(cudaMalloc(&d_z, N * sizeof(double)));
const double alpha = 1.;
cusparseSafeCall(cusparseDcsrsv2_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nnz, &alpha, descr_L, d_A, d_A_RowIndices, d_A_ColIndices, info_L, d_x, d_z, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer));
/*********************/
/* STEP 5: U * y = z */
/*********************/
// --- Allocating the result vector
double *d_y; gpuErrchk(cudaMalloc(&d_y, Ncols * sizeof(double)));
cusparseSafeCall(cusparseDcsrsv2_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nnz, &alpha, descr_U, d_A, d_A_RowIndices, d_A_ColIndices, info_U, d_z, d_y, CUSPARSE_SOLVE_POLICY_USE_LEVEL, pBuffer));
/********************************/
/* MOVE THE RESULTS TO THE HOST */
/********************************/
double *h_y = (double *)malloc(Ncols * sizeof(double));
gpuErrchk(cudaMemcpy(h_x, d_y, N * sizeof(double), cudaMemcpyDeviceToHost));
printf("\n\nFinal result\n");
for (int k = 0; k<N; k++) printf("x[%i] = %f\n", k, h_x[k]);
}
Upvotes: 2
Reputation: 12109
If the problem can be converted into a tri-diagonal problem, you can use cusparseXgtsvStridedBatch to the multiple problems without using a for loop. You will have to use cusparse_v2.h instead of cusparse.h for this to work.
If the problem can not be converted into a tri-diagonal problem, you can use routines from CULA to solve your problem. More information regarding this can be read in their blog post. However this is a commercial library. It may also not be best suited for a band of matrix with 3 bands only.
Upvotes: 1