Reputation: 1924
When running a normal "find" query on MongoDB I can get the total result count (regardless of limit) by running "count" on the returned cursor. So, even if I limit to result set to 10 (for example) I can still know that the total number of results was 53 (again, for example).
If I understand it correctly, the aggregation framework, however, doesn't return a cursor but simply the results. And so, if I used the $limit
pipeline operator, how can I know the total number of results regardless of said limit?
I guess I could run the aggregation twice (once to count the results via $group
, and once with $limit
for the actual limited results), but this seems inefficient.
An alternative approach could be to attach the total number of results to the documents (via $group
) prior to the $limit
operation, but this also seems inefficient as this number will be attached to every document (instead of just returned once for the set).
Am I missing something here? Any ideas? Thanks!
For example, if this is the query:
db.article.aggregate(
{ $group : {
_id : "$author",
posts : { $sum : 1 }
}},
{ $sort : { posts: -1 } },
{ $limit : 5 }
);
How would I know how many results are available (before $limit
)? The result isn't a cursor, so I can't just run count on it.
Upvotes: 13
Views: 23606
Reputation: 31
$facets aggregation operation can be used for Mongo versions >= 3.4. This allows to fork at a particular stage of a pipeline in multiple sub-pipelines allowing in this case to build one sub pipeline to count the number of documents and another one for sorting, skipping, limiting.
This allows to avoid making same stages multiple times in multiple requests.
Upvotes: 1
Reputation: 321
There is a solution using push and slice: https://stackoverflow.com/a/39784851/4752635 (@emaniacs mentions it here as well).
But I prefer using 2 queries. Solution with pushing $$ROOT and using $slice runs into document memory limitation of 16MB for large collections. Also, for large collections two queries together seem to run faster than the one with $$ROOT pushing. You can run them in parallel as well, so you are limited only by the slower of the two queries (probably the one which sorts).
I have settled with this solution using 2 queries and aggregation framework (note - I use node.js in this example):
var aggregation = [
{
// If you can match fields at the begining, match as many as early as possible.
$match: {...}
},
{
// Projection.
$project: {...}
},
{
// Some things you can match only after projection or grouping, so do it now.
$match: {...}
}
];
// Copy filtering elements from the pipeline - this is the same for both counting number of fileter elements and for pagination queries.
var aggregationPaginated = aggregation.slice(0);
// Count filtered elements.
aggregation.push(
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
);
// Sort in pagination query.
aggregationPaginated.push(
{
$sort: sorting
}
);
// Paginate.
aggregationPaginated.push(
{
$limit: skip + length
},
{
$skip: skip
}
);
// I use mongoose.
// Get total count.
model.count(function(errCount, totalCount) {
// Count filtered.
model.aggregate(aggregation)
.allowDiskUse(true)
.exec(
function(errFind, documents) {
if (errFind) {
// Errors.
res.status(503);
return res.json({
'success': false,
'response': 'err_counting'
});
}
else {
// Number of filtered elements.
var numFiltered = documents[0].count;
// Filter, sort and pagiante.
model.request.aggregate(aggregationPaginated)
.allowDiskUse(true)
.exec(
function(errFindP, documentsP) {
if (errFindP) {
// Errors.
res.status(503);
return res.json({
'success': false,
'response': 'err_pagination'
});
}
else {
return res.json({
'success': true,
'recordsTotal': totalCount,
'recordsFiltered': numFiltered,
'response': documentsP
});
}
});
}
});
});
Upvotes: 3
Reputation: 137
I got the same problem, and solved with $project, $slice and $$ROOT.
db.article.aggregate(
{ $group : {
_id : '$author',
posts : { $sum : 1 },
articles: {$push: '$$ROOT'},
}},
{ $sort : { posts: -1 } },
{ $project: {total: '$posts', articles: {$slice: ['$articles', from, to]}},
).toArray(function(err, result){
var articles = result[0].articles;
var total = result[0].total;
});
You need to declare from
and to
variable.
https://docs.mongodb.com/manual/reference/operator/aggregation/slice/
Upvotes: 0
Reputation: 115
in my case, we use $out stage to dump result set from aggeration into a temp/cache table, then count it. and, since we need to sort and paginate results, we add index on the temp table and save table name in session, remove the table on session closing/cache timeout.
Upvotes: -1
Reputation: 285
If you don't want to run two queries in parallel (one to aggregate the #posts for your top authors, and another aggregation to calculate the total posts for all authors) you can just remove $limit on pipeline and on results you can use
totalCount = results.length;
results.slice(number of skip,number of skip + number of limit);
ex:
db.article.aggregate([
{ $group : {
_id : "$author",
posts : { $sum : 1 }
}},
{ $sort : { posts: -1 } }
//{$skip : yourSkip}, //--remove this
//{ $limit : yourLimit }, // remove this too
]).exec(function(err, results){
var totalCount = results.length;//--GEt total count here
results.slice(yourSkip,yourSkip+yourLimit);
});
Upvotes: 1
Reputation: 657
Assaf, there's going to be some enhancements to the aggregation framework in the near future that may allow you to do your calculations in one pass easily, but right now, it is best to perform your calculations by running two queries in parallel: one to aggregate the #posts for your top authors, and another aggregation to calculate the total posts for all authors. Also, note that if all you need to do is a count on documents, using the count function is a very efficient way of performing the calculation. MongoDB caches counts within btree indexes allowing for very quick counts on queries.
If these aggregations turn out to be slow there are a couple of strategies. First off, keep in mind that you want start the query with a $match if applicable to reduce the result set. $matches can also be speed up by indexes. Secondly, you can perform these calculations as pre-aggregations. Instead of possible running these aggregations every time a user accesses some part of your app, have the aggregations run periodically in the background and store the aggregations in a collection that contains pre-aggregated values. This way, your pages can simply query the pre-calculated values from this collection.
Upvotes: 2