Reputation: 3391
I have a large dataset with 100 variables and 400,000 transactions. Here's a sample data:
a <- structure(list(ID = c("A1", "A2", "A3", "A1", "A1", "A2", "A4", "A5", "A2", "A3"),
Type = c("A", "B", "C", "A", "A", "A", "B", "B", "C", "B"),
Alc = c("E", "F", "G", "E", "E", "E", "F", "F", "F", "F"),
Com = c("Y", "N", "Y", "N", "Y", "Y", "Y", "N", "N", "Y")),
.Names = c("ID", "Type", "Alc", "Com"), row.names = c(NA, -10L), class = "data.frame")
a
ID Type Alc Com
1 A1 A E Y
2 A2 B F N
3 A3 C G Y
4 A1 A E N
5 A1 A E Y
6 A2 A E Y
7 A4 B F Y
8 A5 B F N
9 A2 C F N
10 A3 B F Y
I like to get the dataset like this:
ID Type_A Type_B Type_C Alc_E Alc_F Alc_G Com_Y Com_N
A1 3 0 0 3 0 0 2 1
A2 1 1 1 1 2 0 1 2
A3 0 1 1 0 1 1 2 0
A4 0 1 0 0 1 0 1 0
A5 0 1 0 0 1 0 0 1
I am using 'dcast' function from 'reshape2' package. But the results are not according to my requirement.
Thanks in advance.
Upvotes: 2
Views: 773
Reputation: 193677
Since you seem to just be tabulating each column with respect to a$ID
, you can also just use table
within lapply
, like this:
do.call(cbind, lapply(a[-1], function(x) table(a[[1]], x)))
# A B C E F G N Y
# A1 3 0 0 3 0 0 1 2
# A2 1 1 1 1 2 0 2 1
# A3 0 1 1 0 1 1 0 2
# A4 0 1 0 0 1 0 0 1
# A5 0 1 0 0 1 0 1 0
The names aren't nearly as pretty, but it is easy to customize your lapply
command to fix that:
do.call(cbind,
lapply(names(a[-1]), function(x) {
temp <- table(a[[1]], a[[x]])
colnames(temp) <- paste(x, colnames(temp), sep = "_")
temp
}))
# Type_A Type_B Type_C Alc_E Alc_F Alc_G Com_N Com_Y
# A1 3 0 0 3 0 0 1 2
# A2 1 1 1 1 2 0 2 1
# A3 0 1 1 0 1 1 0 2
# A4 0 1 0 0 1 0 0 1
# A5 0 1 0 0 1 0 1 0
Upvotes: 2
Reputation: 118879
Assuming your data.frame
is DF:
require(reshape2)
dcast(melt(DF, id.var=c("ID")), ID ~ variable + value, value.var="value")
Aggregation function missing: defaulting to length
ID Type_A Type_B Type_C Alc_E Alc_F Alc_G Com_N Com_Y
1 A1 3 0 0 3 0 0 1 2
2 A2 1 1 1 1 2 0 2 1
3 A3 0 1 1 0 1 1 0 2
4 A4 0 1 0 0 1 0 0 1
5 A5 0 1 0 0 1 0 1 0
Upvotes: 5