Reputation: 13662
I am trying to write a program that calculates the optimum amount to bet based on log utility and simultaneous dependent events.
In order to do this I am trying to use the numpy.optimize.fmin
function. The function anon
that I am passing to it works and produces (hopefully) correct output but when numpy
tries to optimise the function I get the following error
s[i].append(f[i][0]*w[i][0] + f[i][1]*w[i][1])
IndexError: invalid index to scalar variable.
Since I have no idea about fmin
, I have no idea what is causing this error.
My code is below, hopefully not tl;dr but I wouldn't blame you.
APPENDIX
def main():
p = [[0.1,0.1,0.2, 0.2,0.1,0, 0.1,0.1,0.1]]
w = [[5,4]]
MaxLU(p,w,True)
def MaxLU(p, w, Push = False, maxIter = 10):
#Maximises LU, using Scipy in built function
if Push == True:
anon = lambda f: -PushLogUtility(p, w, f)
else:
anon = lambda f: -LogUtility(p, w, f)
#We use multiple random starts
f = []
LU = []
for i in range(0,maxIter):
start = np.random.rand(len(p))
start = start / 5 * np.sum(start)
f.append(optimize.fmin(anon, start)) #Error occurs in here!
if Push == True:
LU.append(PushLogUtility(p, w, f[-1]))
else:
LU.append(LogUtility(p, w, f[-1]))
#Now find the index of the max LU and return that same index of f
return f[LU.index(np.max(LU))]
def PushLogUtility(p,w,f):
#Outputs log utility incoroporating pushes and dependent totals, money data
#p : 9xk length vector of joint probabilities for each of the k games, p = [[p_(W_T W_M), p_(W_T P_M), p_(W_T L_M), p_(P_T W_M) ... ]]
#w : 2xk matrix of odds where w = [[total odds, money odds] ... ]
#f : 2xk matrix of bankroll percentages to bet, f = [[f_T, f_M] ... ]
utility = 0
k = len(p)
s = k*[[]]
for i in range(0,k):
s[i].append(f[i][0]*w[i][0] + f[i][1]*w[i][1])
s[i].append(f[i][0]*w[i][0])
s[i].append(f[i][0]*w[i][0] - f[i][1])
s[i].append(f[i][1]*w[i][1])
s[i].append(0)
s[i].append(-f[i][1])
s[i].append(-f[i][0] - f[i][1])
s[i].append(-f[i][0] - f[i][1])
s[i].append(-f[i][0] - f[i][1])
for i in range(0,9 ** k):
l = de2ni(i) #Converts number to base 9
if i == 0:
l += int(math.ceil(k - 1 - math.log(i + 1,9))) * [0]
else:
l += int(math.ceil(k - 1 - math.log(i,9))) * [0]
productTerm = np.prod([p[i][l[i]] for i in range(0,k)])
sumTerm = np.sum([s[i][l[i]] for i in range(0,k)])
utility = utility + productTerm * np.log(1 + sumTerm)
return utility
Upvotes: 0
Views: 148
Reputation: 4725
Here where you do:
s[i].append(f[i][0]*w[i][0] + f[i][1]*w[i][1])
if you look at the types, you'll find s[i]
is a []
, f[i]
is 0.104528
and w[i]
is [5,4]
. You then try to index f[i]
a second time - which is not possible and causes the error.
Upvotes: 1