Reputation: 1578
I'm working through a book on clojure and ran into a stumbling block with "->>". The author provides an example of a comp
that converts camelCased
keywords into a clojure map with a more idiomatic camel-cased
approach. Here's the code using comp:
(require '[clojure.string :as str])
(def camel->keyword (comp keyword
str/join
(partial interpose \-)
(partial map str/lower-case)
#(str/split % #"(?<=[a-z])(?=[A-Z])")))
This makes a lot of sense, but I don't really like using partial
all over the place to handle a variable number of arguments. Instead, an alternative is provided here:
(defn camel->keyword
[s]
(->> (str/split s #"(?<=[a-z])(?=[A-Z])")
(map str/lower-case)
(interpose \-)
str/join
keyword))
This syntax is much more readable, and mimics the way I would think about solving a problem (front to back, instead of back to front). Extending the comp
to complete the aforementioned goal...
(def camel-pairs->map (comp (partial apply hash-map)
(partial map-indexed (fn [i x]
(if (odd? i)
x
(camel->keyword x))))))
What would be the equivalent using ->>
? I'm not exactly sure how to thread map-indexed (or any iterative function) using ->>
. This is wrong:
(defn camel-pairs->map
[s]
(->> (map-indexed (fn [i x]
(if (odd? i)
x
(camel-keyword x)))
(apply hash-map)))
Upvotes: 3
Views: 126
Reputation: 26446
Three problems: missing a parenthesis, missing the >
in the name of camel->keyword
, and not "seeding" your ->>
macro with the initial expression s
.
(defn camel-pairs->map [s]
(->> s
(map-indexed
(fn [i x]
(if (odd? i)
x
(camel->keyword x))))
(apply hash-map)))
Is this really more clear than say?
(defn camel-pairs->map [s]
(into {}
(for [[k v] (partition 2 s)]
[(camel->keyword k) v])))
Upvotes: 6