Reputation: 4244
Suppose I have an array
import numpy as np
x=np.array([5,7,2])
I want to create an array that contains a sequence of ranges stacked together with the length of each range given by x:
y=np.hstack([np.arange(1,n+1) for n in x])
Is there some way to do this without the speed penalty of a list comprehension or looping. (x could be a very large array)
The result should be
y == np.array([1,2,3,4,5,1,2,3,4,5,6,7,1,2])
Upvotes: 6
Views: 940
Reputation: 8975
You could use accumulation:
def my_sequences(x):
x = x[x != 0] # you can skip this if you do not have 0s in x.
# Create result array, filled with ones:
y = np.cumsum(x, dtype=np.intp)
a = np.ones(y[-1], dtype=np.intp)
# Set all beginnings to - previous length:
a[y[:-1]] -= x[:-1]
# and just add it all up (btw. np.add.accumulate is equivalent):
return np.cumsum(a, out=a) # here, in-place should be safe.
(One word of caution: If you result array would be larger then the possible size np.iinfo(np.intp).max
this might with some bad luck return wrong results instead of erroring out cleanly...)
And because everyone always wants timings (compared to Ophion's) method:
In [11]: x = np.random.randint(0, 20, 1000000)
In [12]: %timeit ua,uind=np.unique(x,return_inverse=True);a=[np.arange(1,k+1) for k in ua];np.concatenate(np.take(a,uind))
1 loops, best of 3: 753 ms per loop
In [13]: %timeit my_sequences(x)
1 loops, best of 3: 191 ms per loop
of course the my_sequences
function will not ill-perform when the values of x
get large.
Upvotes: 5
Reputation: 19537
First idea; prevent multiple calls to np.arange
and concatenate
should be much faster then hstack
:
import numpy as np
x=np.array([5,7,2])
>>>a=np.arange(1,x.max()+1)
>>> np.hstack([a[:k] for k in x])
array([1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 1, 2])
>>> np.concatenate([a[:k] for k in x])
array([1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 1, 2])
If there are many nonunique values this seems more efficient:
>>>ua,uind=np.unique(x,return_inverse=True)
>>>a=[np.arange(1,k+1) for k in ua]
>>>np.concatenate(np.take(a,uind))
array([1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 1, 2])
Some timings for your case:
x=np.random.randint(0,20,1000000)
Original code
#Using hstack
%timeit np.hstack([np.arange(1,n+1) for n in x])
1 loops, best of 3: 7.46 s per loop
#Using concatenate
%timeit np.concatenate([np.arange(1,n+1) for n in x])
1 loops, best of 3: 5.27 s per loop
First code:
#Using hstack
%timeit a=np.arange(1,x.max()+1);np.hstack([a[:k] for k in x])
1 loops, best of 3: 3.03 s per loop
#Using concatenate
%timeit a=np.arange(1,x.max()+1);np.concatenate([a[:k] for k in x])
10 loops, best of 3: 998 ms per loop
Second code:
%timeit ua,uind=np.unique(x,return_inverse=True);a=[np.arange(1,k+1) for k in ua];np.concatenate(np.take(a,uind))
10 loops, best of 3: 522 ms per loop
Looks like we gain a 14x speedup with the final code.
Small sanity check:
ua,uind=np.unique(x,return_inverse=True)
a=[np.arange(1,k+1) for k in ua]
out=np.concatenate(np.take(a,uind))
>>>out.shape
(9498409,)
>>>np.sum(x)
9498409
Upvotes: 4