Reputation: 543
I wish to compute the prediction interval of the radius from a circle fit with the formula > r² = (x-h)²+(y-k)². r- radius of the circle, x,y, are gaussian coordinates, h,k, mark the center of the fitted circle.
# data
x <- c(1,2.2,1,2.5,1.5,0.5,1.7)
y <- c(1,1,3,2.5,4,1.7,0.8)
# using nls.lm from minpack.lm (minimising the sum of squared residuals)
library(minpack.lm)
residFun <- function(par,x,y) {
res <- sqrt((x-par$h)^2+(y-par$k)^2)-par$r
return(res)
}
parStart <- list("h" = 1.5, "k" = 2.5, "r" = 1.7)
out <- nls.lm(par = parStart, x = x, y = y, lower =NULL, upper = NULL, residFun)
The problem is, predict()
doesn't work with nls.lm, hence I am trying to compute the circle fit using nlsLM. (I could compute it by hand, but have troubles creating my Designmatrix).`
So this is what I tried next:
dat = list("x" = x,"y" = y)
out1 <- nlsLM(y ~ sqrt(-(x-h)^2+r^2)+k, start = parStart )
which results in:
Error in stats:::nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter estimates
Question 1a: How does nlsLM()
work with circle fits? (advantage being that the generic predict()
is available.
Question 1b: How do I get the prediction interval for my circle fit?
EXAMPLE from linear regression (this is what I want for the circle regression)
attach(faithful)
eruption.lm = lm(eruptions ~ waiting)
newdata = data.frame(waiting=seq(45,90, length = 272))
# confidence interval
conf <- predict(eruption.lm, newdata, interval="confidence")
# prediction interval
pred <- predict(eruption.lm, newdata, interval="predict")
# plot of the data [1], the regression line [1], confidence interval [2], and prediction interval [3]
plot(eruptions ~ waiting)
lines(conf[,1] ~ newdata$waiting, col = "black") # [1]
lines(conf[,2] ~ newdata$waiting, col = "red") # [2]
lines(conf[,3] ~ newdata$waiting, col = "red") # [2]
lines(pred[,2] ~ newdata$waiting, col = "blue") # [3]
lines(pred[,3] ~ newdata$waiting, col = "blue") # [3]
Kind regards
Summary of Edits:
Edit1: Rearranged formula in nlsLM, but parameter (h,k,r) results are now different in out and out1 ...
Edit2: Added 2 wikipedia links for clarification puprose on terminology used: (c.f. below)
Edit3: Some rephrasing of the question(s)
Edit4: Added a working example for linear regression
Upvotes: 2
Views: 944
Reputation: 467
I think that this question is not answerable in its current form. Any predict()
function that is based on a linear model will require the predicted variable to be a linear function of the input design matrix. r^2 = (x-x0)^2 + (y-y0)^2
is not a linear function of the design matrix (which would be something like [x0 x y0 y]
, so I don't think you're going to be able to find a linear model fit that will give you confidence intervals. If someone more clever than I am has a way to do it, though, I'd be very interested in hearing about it.
The general way to approach these sorts of problems is to create a hierarchical nonlinear model, where your hyperparameters would be x0
and y0
(your h and k) with uniform distribution over your search space, and then the r^2 would be distributed ~N((x-x0)^2+(y-y0)^2, \sigma). You would then use MCMC sampling or similar to get your posterior confidence intervals.
Upvotes: 1
Reputation: 263301
I am having a hard time figuring out what you want to do. Let me illustrate what the data looks like and something about the "prediction".
plot(x,y, xlim=range(x)*c(0, 1.5), ylim=range(y)*c(0, 1.5))
lines(out$par$h+c(-1,-1,1,1,-1)*out$par$r, # extremes of x-coord
out$par$k+c(-1,1,1,-1 ,-1)*out$par$r, # extremes of y-coord
col="red")
So what "prediction interval" are we speaking about? ( I do realize that you were thinking of a circle and if you just want to plot a circle on this background that's going to be pretty easy as well.)
lines(out$par$h+cos(seq(-pi,pi, by=0.1))*out$par$r, #center + r*cos(theta)
out$par$k+sin(seq(-pi,pi, by=0.1))*out$par$r, #center + r*sin(theta)
col="red")
Upvotes: 2
Reputation: 3168
Here's a solution to find h,k,r using base R's optim function. You essentially create a cost function that is a closure containing the data you wish to optimize over. I had to RSS value, else we would go to -Inf. There is a local optima problem, so you need to run this a few times...
# data
x <- c(1,2.2,1,2.5,1.5,0.5,1.7)
y <- c(1,1,3,2.5,4,1.7,0.8)
residFunArg <- function(xVector,yVector){
function(theta,xVec=xVector,yVec=yVector){
#print(xVec);print(h);print(r);print(k)
sum(sqrt((xVec-theta[1])^2+(yVec-theta[2])^2)-theta[3])^2
}
}
rFun = residFunArg(x,y);
o = optim(f=rFun,par=c(0,0,0))
h = o$par[1]
k = o$par[2]
r = o$par[3]
Run this command in the REPL to observe the local mins:
o=optim(f=tFun,par=runif(3),method="CG");o$par
Upvotes: 0