Reputation: 7022
I have written a function to convert pandas datetime dates to month-end:
import pandas
import numpy
import datetime
from pandas.tseries.offsets import Day, MonthEnd
def get_month_end(d):
month_end = d - Day() + MonthEnd()
if month_end.month == d.month:
return month_end # 31/March + MonthEnd() returns 30/April
else:
print "Something went wrong while converting dates to EOM: " + d + " was converted to " + month_end
raise
This function seems to be quite slow, and I was wondering if there is any faster alternative? The reason I noticed it's slow is that I am running this on a dataframe column with 50'000 dates, and I can see that the code is much slower since introducing that function (before I was converting dates to end-of-month).
df = pandas.read_csv(inpath, na_values = nas, converters = {open_date: read_as_date})
df[open_date] = df[open_date].apply(get_month_end)
I am not sure if that's relevant, but I am reading the dates in as follows:
def read_as_date(x):
return datetime.datetime.strptime(x, fmt)
Upvotes: 36
Views: 61703
Reputation: 91
What you are looking for might be:
df.resample('M').last()
The other method as said earlier by @Jeff:
df.index = df.index.to_period('M').to_timestamp('M')
Upvotes: 0
Reputation: 623
If the date column is in datetime format and is set to starting day of the month, this will add one month of time to it:
df['date1']=df['date'] + pd.offsets.MonthEnd(0)
Upvotes: 8
Reputation: 8287
In case the date is not in the index
but in another column (works for Pandas 0.25.0):
import pandas as pd
import numpy as np
df = pd.DataFrame(dict(date = [pd.Timestamp('20130101'),
pd.Timestamp('20130201'),
pd.Timestamp('20130301'),
pd.Timestamp('20130401')],
value = np.random.rand(4)))
print(df.to_string())
df.date = df.date.dt.to_period('M').dt.to_timestamp('M')
print(df.to_string())
Output:
date value
0 2013-01-01 0.295791
1 2013-02-01 0.278883
2 2013-03-01 0.708943
3 2013-04-01 0.483467
date value
0 2013-01-31 0.295791
1 2013-02-28 0.278883
2 2013-03-31 0.708943
3 2013-04-30 0.483467
Upvotes: 1
Reputation: 621
you can also use numpy to do it faster:
import numpy as np
date_array = np.array(['2013-01-01', '2013-01-15', '2013-01-30']).astype('datetime64[ns]')
month_start_date = date_array.astype('datetime64[M]')
Upvotes: 1
Reputation: 31
import pandas as pd
import numpy as np
import datetime as dt
df0['Calendar day'] = pd.to_datetime(df0['Calendar day'], format='%m/%d/%Y')
df0['Calendar day'] = df0['Calendar day'].apply(pd.datetools.normalize_date)
df0['Month Start Date'] = df0['Calendar day'].dt.to_period('M').apply(lambda r: r.start_time)
This code should work. Calendar Day is a column in which date is given in the format %m/%d/%Y. For example: 12/28/2014 is 28 December, 2014. The output comes out to be 2014-12-01 in class 'pandas.tslib.Timestamp' type.
Upvotes: 3
Reputation: 128938
Revised, converting to period and then back to timestamp does the trick
In [104]: df = DataFrame(dict(date = [Timestamp('20130101'),Timestamp('20130131'),Timestamp('20130331'),Timestamp('20130330')],value=randn(4))).set_index('date')
In [105]: df
Out[105]:
value
date
2013-01-01 -0.346980
2013-01-31 1.954909
2013-03-31 -0.505037
2013-03-30 2.545073
In [106]: df.index = df.index.to_period('M').to_timestamp('M')
In [107]: df
Out[107]:
value
2013-01-31 -0.346980
2013-01-31 1.954909
2013-03-31 -0.505037
2013-03-31 2.545073
Note that this type of conversion can also be done like this, the above would be slightly faster, though.
In [85]: df.index + pd.offsets.MonthEnd(0)
Out[85]: DatetimeIndex(['2013-01-31', '2013-01-31', '2013-03-31', '2013-03-31'], dtype='datetime64[ns]', name=u'date', freq=None, tz=None)
Upvotes: 59