Reputation: 3297
Let's say I want to execute an arbitrary mov instruction. I can write the following function (using GCC inline assembly):
void mov_value_to_eax()
{
asm volatile("movl %0, %%eax"::"m"(function_parameter):"%eax");
// will move the value of the variable function_parameter to register eax
}
And I can make functions like this one that will work on every possible register. I mean -
void movl_value_to_ebx() { asm volatile("movl %0, %%ebx"::"m"(function_parameter):"%ebx"); }
void movl_value_to_ecx() { asm volatile("movl %0, %%ecx"::"m"(function_parameter):"%ecx"); }
...
In a similar way I can write functions that will move memory in arbitrary addresses into specific registers, and specific registers to arbitrary addresses in memory. (mov eax, [memory_address]
and mov [memory_address]
,eax)
Now, I can perform these basic instructions whenever I want, so I can create other instructions. For example, to move a register to another register:
function_parameter = 0x028FC;
mov_eax_to_memory(); // parameter is a pointer to some temporary memory address
mov_memory_to_ebx(); // same parameter
So I can parse an assembly instruction and decide what functions to use based on it, like this:
if (sourceRegister == ECX) mov_ecx_to_memory();
if (sourceRegister == EAX) mov_eax_to_memory();
...
if (destRegister == EBX) mov_memory_to_ebx();
if (destRegister == EDX) mov_memory_to_edx();
...
If it can work, It allows you to execute arbitrary mov instructions.
Another option is to make a list of functions to call and then loop through the list and call each function. Maybe it requires more tricks for making equivalent instructions like these.
So my question is this: Is is possible to make such things for all (or some) of the possible opcodes? It probably requires a lot of functions to write, but is it possible to make a parser, that will build code somehow based on given assembly instructions ,and than execute it, or that's impossible?
EDIT: You cannot change memory protections or write to executable memory locations.
Upvotes: 1
Views: 1032
Reputation: 7873
...OK, based on your comment Because if it's working it can be a way to execute code if you can't write it to memory. (the OS may prevent it)
....
Of course you can execute arbitrary instructions (as long as they're legal for whatever ring you're running in). How else would JIT work? You just need to call the OS system call(s) for setting the permissions of the memory page(s) in which your instructions reside... change them to "executable" and then call 'em!
Upvotes: 1
Reputation: 7873
It is really unclear to me why you're asking this question. First of all, this function...
void mov_value_to_eax()
{
asm volatile("movl %0, %%eax"::"m"(function_parameter):"%eax");
// will move the value of the variable function_parameter to register eax
}
...uses GCC inline assembly, but the function itself is not inline, meaning that there will be prologue & epilogue code wrapping it, which will probably affect your intended result. You may instead want to use GCC inline assembly functions (as opposed to functions that contain GCC inline assembly), which may get you closer to what you want, but there are still problems with that.....
OK, so supposing you write a GCC inline assembly function for every possible x86 opcode (at least the ones that the GCC assembler knows about). Now supposing you want to invoke those functions in arbitrary order to accomplish whatever you might wish to accomplish (taking into account which opcodes are legal to execute at ring 3 (or in whatever ring you're coding for)). Your example shows you using C statements to encode logic for determining whether to call an inline assembly function or not. Guess what: Those C statements are using processor registers (perhaps even EAX!) to accomplish their tasks. Whatever you wanted to do by calling these arbitrary inline assembly functions is being stomped on by the compiler-emitted assembly code for the logic (if (...)
, etc). And vice-versa: Your inline assembly function arbitrary instructions are stomping on the registers that the compiler-emitted instructions expect to not be stomped-on. The result is not likely to run without crashing.
If you want to write code in assembly, I suggest you simply write it in assembly & use the GCC assembler to assemble it. Alternatively, you can write whole C-callable assembly functions within an asm()
statement, and call them from your C code, if you like. But the C-callable assembly functions you write need to operate within the rules of the calling convention (ABI) you're using: If your assembly functions use a callee-saved register, your function will need to save the original value in that register (generally on the stack), and then restore it before returning to the caller.
Upvotes: 3