Reputation: 1111
I need help writing a loop in R that will allow me to do a series of power calculations for different parameters. Alpha will always = 0.05 and N is the sample size that will take on various values so that:
N= 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 1000.
H2 will also take on different values for each N analyzed, these are: 0.005, 0.01, 0. 02
So as an example, for N=1000, I would like to calculate the power with H2=0.005, H2=0.01 and H2= 0.02 at alpha=0.05. Then I want to do this analysis for all the values of N I mentioned above.
This is the code I am using below for just one run:
N = 1000
alpha = 0.05
H2 = 0.005
threshold = qchisq(alpha, df = 1, lower.tail = FALSE)
power = pchisq(threshold, df = 1, lower.tail = FALSE, ncp = N * H2)
Can someone please help me turn this into a loop so I can get these results all at once in a structured table please? Thanks.
Upvotes: 0
Views: 1100
Reputation: 15458
N <- c(1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000)
N<-as.list(rep(N,each=3)) # 3 is the length of original H2
H2 <- c(0.005, 0.01, 0.02)
H2<-as.list(rep(H2,10)) # 10 is the length of original N
myresult<-Map(function(x,y) cbind(x,y,power=pchisq(qchisq(0.05, df = 1, lower.tail = FALSE), df = 1, lower.tail = FALSE, ncp = x * y)),N,H2)
myout<-do.call(rbind,myresult)
colnames(myout)[1:2]<-c("N","H2")
> head(myout,10)
N H2 power
[1,] 1000 0.005 0.6088
[2,] 1000 0.010 0.8854
[3,] 1000 0.020 0.9940
[4,] 2000 0.005 0.8854
[5,] 2000 0.010 0.9940
[6,] 2000 0.020 1.0000
[7,] 3000 0.005 0.9721
[8,] 3000 0.010 0.9998
[9,] 3000 0.020 1.0000
[10,] 4000 0.005 0.9940
Upvotes: 0
Reputation: 132969
N <- c(1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000)
H2 <- c(0.005, 0.01, 0.02)
alpha <- 0.05
threshold <- qchisq(alpha, df = 1, lower.tail = FALSE)
paraComb <- expand.grid(N, H2)
ncp <- with(paraComb, Var1 * Var2)
setNames(cbind(paraComb,
sapply(ncp,
function(ncp) pchisq(threshold,
df = 1, lower.tail = FALSE,
ncp = ncp))
),
c("N", "H2", "power"))
# N H2 power
# 1 1000 0.005 0.6087795
# 2 2000 0.005 0.8853791
# 3 3000 0.005 0.9721272
# 4 4000 0.005 0.9940005
# 5 5000 0.005 0.9988173
# <snip>
Upvotes: 1