Reputation: 338
i am trying to call cocos3d animation on my view controller when i call the animation from my view controller then i am getting error.
" cocos2d: Using Director Type:CCDirectorTimer [ERROR] cocos23Layer requires a controller for rendering a 3D scene. 2013-08-29 11:54:56.419 MaskedCal[3854:c07] * Assertion failure in -[cocos23Layer initWithController:], /Users/34in/Desktop/cocos23/cocos23/cocos23/cocos3d/cocos3d/Scenes/CC3Layer.m:74 "
this is my view controller where i want to call my cocos3d animation
- (void)setupCocos2D { EAGLView *glView = [EAGLView viewWithFrame:self.view.bounds pixelFormat:kEAGLColorFormatRGB565 // kEAGLColorFormatRGBA8 depthFormat:0 // GL_DEPTH_COMPONENT16_OES ]; [[CCDirector sharedDirector] setOpenGLView:glView]; // Create the customized CC3Layer that supports 3D rendering. CC3Layer* cc3Layer = [cocos23Layer node]; // cc3Layer = [cocos23Layer layerWithColor: ccc4(100, 120, 220, 255)]; //[cc3Layer scheduleUpdate]; // self.view = glView; // [CCTexture2D setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGBA8888]; cc3Layer.cc3Scene = [cocos23Scene scene]; CC3ControllableLayer* mainLayer = cc3Layer; // // CCScene *scene = [CCScene node]; // [scene addChild: mainLayer]; // [[CCDirector sharedDirector] runWithScene: scene]; mainLayer.contentSize = CGSizeMake(2048, 1320); [CCDirector sharedDirector].animationInterval = (1.0f / 60.0f); [CCDirector sharedDirector].displayStats = YES; [[CCDirector sharedDirector] enableRetinaDisplay: YES]; [[CCDirector sharedDirector] runWithScene:mainLayer]; }
*this is my cocos23scene where animation happened *
-(void) initializeScene {
// Create the camera, place it back a bit, and add it to the scene
CC3Camera* cam = [CC3Camera nodeWithName: @"Camera"];
cam.location = cc3v( 0.0, 0.0, 6.0 );
[self addChild: cam];
// Create a light, place it back and to the left at a specific
// position (not just directional lighting), and add it to the scene
CC3Light* lamp = [CC3Light nodeWithName: @"Lamp"];
lamp.location = cc3v( -2.0, 0.0, 0.0 );
lamp.isDirectionalOnly = NO;
[cam addChild: lamp];
// This is the simplest way to load a POD resource file and add the
// nodes to the CC3Scene, if no customized resource subclass is needed.
[self addContentFromPODFile: @"hello-world.pod"];
// Create OpenGL buffers for the vertex arrays to keep things fast and efficient, and to
// save memory, release the vertex content in main memory because it is now redundant.
[self createGLBuffers];
[self releaseRedundantContent];
// Select an appropriate shader program for each mesh node in this scene now. If this step
// is omitted, a shader program will be selected for each mesh node the first time that mesh
// node is drawn. Doing it now adds some additional time up front, but avoids potential pauses
// as each shader program is loaded as needed the first time it is needed during drawing.
[self selectShaderPrograms];
// With complex scenes, the drawing of objects that are not within view of the camera will
// consume GPU resources unnecessarily, and potentially degrading app performance. We can
// avoid drawing objects that are not within view of the camera by assigning a bounding
// volume to each mesh node. Once assigned, the bounding volume is automatically checked
// to see if it intersects the camera's frustum before the mesh node is drawn. If the node's
// bounding volume intersects the camera frustum, the node will be drawn. If the bounding
// volume does not intersect the camera's frustum, the node will not be visible to the camera,
// and the node will not be drawn. Bounding volumes can also be used for collision detection
// between nodes. You can create bounding volumes automatically for most rigid (non-skinned)
// objects by using the createBoundingVolumes on a node. This will create bounding volumes
// for all decendant rigid mesh nodes of that node. Invoking the method on your scene will
// create bounding volumes for all rigid mesh nodes in the scene. Bounding volumes are not
// automatically created for skinned meshes that modify vertices using bones. Because the
// vertices can be moved arbitrarily by the bones, you must create and assign bounding
// volumes to skinned mesh nodes yourself, by determining the extent of the bounding
// volume you need, and creating a bounding volume that matches it. Finally, checking
// bounding volumes involves a small computation cost. For objects that you know will be
// in front of the camera at all times, you can skip creating a bounding volume for that
// node, letting it be drawn on each frame.
[self createBoundingVolumes];
// ------------------------------------------
// That's it! The scene is now constructed and is good to go.
// To help you find your scene content once it is loaded, the onOpen method below contains
// code to automatically move the camera so that it frames the scene. You can remove that
// code once you know where you want to place your camera.
// If you encounter problems displaying your models, you can uncomment one or more of the
// following lines to help you troubleshoot. You can also use these features on a single node,
// or a structure of nodes. See the CC3Node notes for more explanation of these properties.
// Also, the onOpen method below contains additional troubleshooting code you can comment
// out to move the camera so that it will display the entire scene automatically.
// Displays short descriptive text for each node (including class, node name & tag).
// The text is displayed centered on the pivot point (origin) of the node.
// self.shouldDrawAllDescriptors = YES;
// Displays bounding boxes around those nodes with local content (eg- meshes).
// self.shouldDrawAllLocalContentWireframeBoxes = YES;
// Displays bounding boxes around all nodes. The bounding box for each node
// will encompass its child nodes.
// self.shouldDrawAllWireframeBoxes = YES;
// If you encounter issues creating and adding nodes, or loading models from
// files, the following line is used to log the full structure of the scene.
LogInfo(@"The structure of this scene is: %@", [self structureDescription]);
// ------------------------------------------
// And to add some dynamism, we'll animate the 'hello, world' message
// using a couple of actions...
// Fetch the 'hello, world' object that was loaded from the POD file and start it rotating
CC3MeshNode* helloTxt = (CC3MeshNode*)[self getNodeNamed: @"Hello"];
CCActionInterval* partialRot = [CC3RotateBy actionWithDuration: 1.0
rotateBy: cc3v(0.0, 30.0, 0.0)];
[helloTxt runAction: [CCRepeatForever actionWithAction: partialRot]];
// To make things a bit more appealing, set up a repeating up/down cycle to
// change the color of the text from the original red to blue, and back again.
GLfloat tintTime = 8.0f;
ccColor3B startColor = helloTxt.color;
ccColor3B endColor = { 50, 0, 200 };
CCActionInterval* tintDown = [CCTintTo actionWithDuration: tintTime
red: endColor.r
green: endColor.g
blue: endColor.b];
CCActionInterval* tintUp = [CCTintTo actionWithDuration: tintTime
red: startColor.r
green: startColor.g
blue: startColor.b];
CCActionInterval* tintCycle = [CCSequence actionOne: tintDown two: tintUp];
[helloTxt runAction: [CCRepeatForever actionWithAction: tintCycle]];
}
Upvotes: 1
Views: 875
Reputation: 338
Yes i have got it working,just call it from your view controller as
CCTexture2D.defaultAlphaPixelFormat = kCCTexture2DPixelFormat_RGBA8888; // ** START OF COCOS3D SETUP CODE... **
// Create the customized CC3Layer that supports 3D rendering.
if( ! [CCDirector setDirectorType: kCCDirectorTypeDisplayLink] )
[CCDirector setDirectorType: kCCDirectorTypeDefault];
// Create the view controller for the 3D view.
_viewController = [CC3DeviceCameraOverlayUIViewController new];
_viewController.supportedInterfaceOrientations = UIInterfaceOrientationMaskAll;
_viewController.viewShouldUseStencilBuffer = NO; // Set to YES if using shadow volumes
_viewController.viewPixelSamples = 1; // Set to 4 for antialiasing multisampling
// Create the CCDirector, set the frame rate, and attach the view.
CCDirector *director = CCDirector.sharedDirector;
director.runLoopCommon = YES; // Improves display link integration with UIKit
director.animationInterval =(1.0f / kAnimationFrameRate);
director.displayFPS = YES;
director.openGLView = _viewController.view;
// Enables High Res mode on Retina Displays and maintains low res on all other devices
// This must be done after the GL view is assigned to the director!
[director enableRetinaDisplay: YES];;
//_viewController.view.backgroundColor=[UIColor cl];
[AvtaarImageview addSubview:_viewController.view];
CC3Layer* cc3Layer = [cocosnewLayer layerWithController: _viewController];
// Create the customized 3D scene and attach it to the layer.
// Could also just create this inside the customer layer.
cc3Layer.cc3Scene = [cocosnewScene scene];
// Assign to a generic variable so we can uncomment options below to play with the capabilities
CC3ControllableLayer* mainLayer = cc3Layer;
// The 3D layer can run either directly in the scene, or it can run as a smaller "sub-window"
// within any standard CCLayer. So you can have a mostly 2D window, with a smaller 3D window
// embedded in it. To experiment with this smaller embedded 3D window, uncomment the following lines:
// CGSize winSize = CCDirector.sharedDirector.winSize;
// cc3Layer.position = ccp(30.0, 30.0);
// cc3Layer.contentSize = CGSizeMake(winSize.width - 100.0, winSize.width - 40.0);
// cc3Layer.alignContentSizeWithDeviceOrientation = YES;
// mainLayer = [CC3ControllableLayer layerWithController: _viewController];
// [mainLayer addChild: cc3Layer];
// A smaller 3D layer can even be moved around on the screen dyanmically. To see this in action,
// uncomment the lines above as described, and also uncomment the following two lines.
// cc3Layer.position = ccp(0.0, 0.0);
// [cc3Layer runAction: [CCMoveTo actionWithDuration: 15.0 position: ccp(500.0, 250.0)]];
// Set the layer in the controller
_viewController.controlledNode = mainLayer;
// Run the layer in the director
CCScene *scene = [CCScene node];
[scene addChild: mainLayer];
[CCDirector.sharedDirector runWithScene: scene];
Upvotes: 1