Reputation:
I am trying to find the eigenvalues/vectors for the following matrix:
A = np.array([[1, 0, 0],
[0, 1, 0],
[1, 1, 0]])
using the code:
from numpy import linalg as LA
e_vals, e_vecs = LA.eig(A)
I'm getting this as the answer:
print(e_vals)
[ 0. 1. 1.]
print(e_vecs)
[[ 0. 0.70710678 0. ]
[ 0. 0. 0.70710678]
[ 1. 0.70710678 0.70710678]]
However, I believe the following should be the answer.
[1] Real Eigenvalue = 0.00000
[1] Real Eigenvector:
0.00000
0.00000
1.00000
[2] Real Eigenvalue = 1.00000
[2] Real Eigenvector:
1.00000
0.00000
1.00000
[3] Real Eigenvalue = 1.00000
[3] Real Eigenvector:
0.00000
1.00000
1.00000
That is, the eigenvalue-eigenvector problem says that the follow should hold true:
# A * e_vecs = e_vals * e_vecs
print(A.dot(e_vecs))
[[ 0. 0.70710678 0. ]
[ 0. 0. 0.70710678]
[ 0. 0.70710678 0.70710678]]
print(e_vals.dot(e_vecs))
[ 1. 0.70710678 1.41421356]
Upvotes: 6
Views: 4396
Reputation: 879083
The eigenvalues returned by linalg.eig
are columns vectors, so you need to iterate over the transpose of e_vecs
(since iteration over a 2D array returns row vectors by default):
import numpy as np
import numpy.linalg as LA
A = np.array([[1, 0, 0], [0, 1, 0], [1, 1, 0]])
e_vals, e_vecs = LA.eig(A)
print(e_vals)
# [ 0. 1. 1.]
print(e_vecs)
# [[ 0. 0. 1. ]
# [ 0.70710678 0. 0.70710678]
# [ 0. 0.70710678 0.70710678]]
for val, vec in zip(e_vals, e_vecs.T):
assert np.allclose(np.dot(A, vec), val * vec)
Upvotes: 6