Reputation: 3
I'm trying to improve the speed of the following code calculation:
for i=1:5440
for j=1:46
for k= 1:2
pol(i,j,k)= kr0*exp(0.8*k*0.1)*(abs((I(i)*exp(-0.1*j*2.5))^0.9)+0.0);
end
end
end
Where I
is a vector with 5440 values.
Is there any way to avoid the three for loops and increase the speed of this operation?. I can't find a right solution.
Thanks
Upvotes: 0
Views: 261
Reputation: 151
MATLAB is column-major, so if you wanted to keep the loops, you should be able to get some speed up by looping your variables in the k, j, i order instead of i, j, k.
Upvotes: 0
Reputation: 124563
How about:
[i,j,k] = ndgrid(1:5440,1:46,1:2);
pol = kr0*exp(0.8*k*0.1) .* ( abs((I(i).*exp(-0.1*j*2.5)).^0.9) + 0.0);
Upvotes: 2
Reputation: 9864
Use bsxfun
for vectorization
f1 = @(a,b) (abs((a.*exp(-0.1*b*2.5)).^0.9)+0.0);
f2 = @(c,d) kr0*exp(0.8*c*0.1).*d;
pol = bsxfun(f2, permute(1:2, [3 1 2]), bsxfun(f1, I(:), 1:46));
Note that since array 1:2
is on third dimension we need permute
to convert a matrix of size 1x2
to a matrix of size 1x1x2
.
Here is a benchmark for comparision
kr0=1;
I=rand(5440,1);
[pol0, pol] = deal(zeros(5440, 46, 2));
tic
for mm = 1:10,
for i=1:5440
for j=1:46
for k= 1:2
pol0(i,j,k)= kr0*exp(0.8*k*0.1)*(abs((I(i)*exp(-0.1*j*2.5))^0.9)+0.0);
end
end
end
end
toc
tic
for mm=1:10
f1 = @(a,b) (abs((a.*exp(-0.1*b*2.5)).^0.9)+0.0);
f2 = @(c,d) kr0*exp(0.8*c*0.1).*d;
pol = bsxfun(f2, permute(1:2, [3 1 2]), bsxfun(f1, I(:), 1:46));
end
toc
isequal(pol0,pol)
Which returns
Elapsed time is 1.665443 seconds.
Elapsed time is 0.306089 seconds.
ans =
1
It is more than 5 times faster and the results are equal.
Upvotes: 3