Reputation: 23
I have compiled multiple attempts at this and have failed miserably, some assistance would be greatly appreciated.
The function should have one parameter without using the print statement. Using Newton's method it must return the estimated square root as its value. Adding a for loop to update the estimate 20 times, and using the return statement to come up with the final estimate.
so far I have...
from math import *
def newton_sqrt(x):
for i in range(1, 21)
srx = 0.5 * (1 + x / 1)
return srx
This is not an assignment just practice. I have looked around on this site and found helpful ways but nothing that is descriptive enough.
Upvotes: 1
Views: 7018
Reputation: 69182
You probably want something more like:
def newton_sqrt(x):
srx = 1
for i in range(1, 21):
srx = 0.5 * (srx + x/srx)
return srx
newton_sqrt(2.)
# 1.4142135623730949
This both: 1) updates the answer at each iteration, and 2) uses something much closer to the correct formula (ie, no useless division by 1).
Upvotes: 0
Reputation: 129497
I urge you to look at the section on Wikipedia regarding applying Newton's method to finding the square root of a number.
The process generally works like this, our function is
f(x) = x2 - a f'(x) = 2x
where a
is the number we want to find the square root of.
Therefore, our estimates will be
xn+1 = xn - (xn2 - a) / (2xn)
So, if your initial guess is x<sub>0</sub>
, then our estimates are
x1 = x0 - (x02 - x) / (2x0) x2 = x1 - (x12 - x) / (2x1) x3 = x2 - (x22 - x) / (2x2) ...
Converting this to code, taking our initial guess to be the function argument itself, we would have something like
def newton_sqrt(a):
x = a # initial guess
for i in range(20):
x -= (x*x - a) / (2.0*x) # apply the iterative process once
return x # return 20th estimate
Here's a small demo:
>>> def newton_sqrt(a):
... x = a
... for i in range(20):
... x -= (x*x - a) / (2.0*x)
... return x
...
>>> newton_sqrt(2)
1.414213562373095
>>> 2**0.5
1.4142135623730951
>>>
>>> newton_sqrt(3)
1.7320508075688774
>>> 3**0.5
1.7320508075688772
Upvotes: 1
Reputation: 269
Expanding on your code a bit, you could add a guess as a parameter
from math import *
def newton_sqrt(x, guess):
val = x
for i in range(1, 21):
guess = (0.5 * (guess + val / guess));
return guess
print newton_sqrt(4, 3) # Returns 2.0
Upvotes: 0
Reputation: 22671
This is an implementation of the Newton's method,
def newton_sqrt(val):
def f(x):
return x**2-val
def derf(x):
return 2*x
guess =val
for i in range(1, 21):
guess = guess-f(guess)/derf(guess)
#print guess
return guess
newton_sqrt(2)
See here for how it works. derf is the derivative of f.
Upvotes: 2
Reputation: 28370
One problem is that x/1
is not going to do much and another is that since x never changes all the iterations of the loop will do the same.
Upvotes: 0
Reputation: 351
In your code you are not updating x (and consequently srx) as you loop.
Upvotes: 0