Reputation: 1422
I've tried searching this and can't find a satisfactory answer.
I want to take a list/array of numbers and round them all to n significant figures. I have written a function to do this, but I was wondering if there is a standard method for this? I've searched but can't find it. Example:
In: [ 0.0, -1.2366e22, 1.2544444e-15, 0.001222 ], n=2
Out: [ 0.00, -1.24e22, 1.25e-15, 1.22e-3 ]
Thanks
Upvotes: 41
Views: 60536
Reputation: 608
First a criticism: you're counting the number of significant figures wrong. In your example you want n=3, not 2.
It is possible to get around most of the edge cases by letting numpy library functions handle them if you use the function that makes the binary version of this algorithm simple: frexp. As a bonus, this algorithm will also run much faster because it never calls the log function.
#The following constant was computed in maxima 5.35.1 using 64 bigfloat digits of precision
__logBase10of2 = 3.010299956639811952137388947244930267681898814621085413104274611e-1
import numpy as np
def RoundToSigFigs_fp( x, sigfigs ):
"""
Rounds the value(s) in x to the number of significant figures in sigfigs.
Return value has the same type as x.
Restrictions:
sigfigs must be an integer type and store a positive value.
x must be a real value or an array like object containing only real values.
"""
if not ( type(sigfigs) is int or type(sigfigs) is long or
isinstance(sigfigs, np.integer) ):
raise TypeError( "RoundToSigFigs_fp: sigfigs must be an integer." )
if sigfigs <= 0:
raise ValueError( "RoundToSigFigs_fp: sigfigs must be positive." )
if not np.all(np.isreal( x )):
raise TypeError( "RoundToSigFigs_fp: all x must be real." )
#temporarily suppres floating point errors
errhanddict = np.geterr()
np.seterr(all="ignore")
matrixflag = False
if isinstance(x, np.matrix): #Convert matrices to arrays
matrixflag = True
x = np.asarray(x)
xsgn = np.sign(x)
absx = xsgn * x
mantissas, binaryExponents = np.frexp( absx )
decimalExponents = __logBase10of2 * binaryExponents
omags = np.floor(decimalExponents)
mantissas *= 10.0**(decimalExponents - omags)
if type(mantissas) is float or isinstance(mantissas, np.floating):
if mantissas < 1.0:
mantissas *= 10.0
omags -= 1.0
else: #elif np.all(np.isreal( mantissas )):
fixmsk = mantissas < 1.0,
mantissas[fixmsk] *= 10.0
omags[fixmsk] -= 1.0
result = xsgn * np.around( mantissas, decimals=sigfigs - 1 ) * 10.0**omags
if matrixflag:
result = np.matrix(result, copy=False)
np.seterr(**errhanddict)
return result
And it handles all of your cases correctly, including infinite, nan, 0.0, and a subnormal number:
>>> eglist = [ 0.0, -1.2366e22, 1.2544444e-15, 0.001222, 0.0,
... float("nan"), float("inf"), float.fromhex("0x4.23p-1028"),
... 0.5555, 1.5444, 1.72340, 1.256e-15, 10.555555 ]
>>> eglist
[0.0, -1.2366e+22, 1.2544444e-15, 0.001222, 0.0,
nan, inf, 1.438203867284623e-309,
0.5555, 1.5444, 1.7234, 1.256e-15, 10.555555]
>>> RoundToSigFigs(eglist, 3)
array([ 0.00000000e+000, -1.24000000e+022, 1.25000000e-015,
1.22000000e-003, 0.00000000e+000, nan,
inf, 1.44000000e-309, 5.56000000e-001,
1.54000000e+000, 1.72000000e+000, 1.26000000e-015,
1.06000000e+001])
>>> RoundToSigFigs(eglist, 1)
array([ 0.00000000e+000, -1.00000000e+022, 1.00000000e-015,
1.00000000e-003, 0.00000000e+000, nan,
inf, 1.00000000e-309, 6.00000000e-001,
2.00000000e+000, 2.00000000e+000, 1.00000000e-015,
1.00000000e+001])
Edit: 2016/10/12 I found an edge case that the original code handled wrong. I have placed a fuller version of the code in a GitHub repository.
Edit: 2019/03/01 Replace with recoded version.
Edit: 2020/11/19 Replace with vectorized version from Github that handles arrays. Note that preserving input data types, where possible, was also a goal of this code.
Upvotes: 13
Reputation: 125
One more solution which works well. Doing the test from @ScottGigante, it would be second best with a timing of 1.75ms.
import math
def sig_dig(x, n_sig_dig = 5):
num_of_digits = len(str(x).replace(".", ""))
if n_sig_dig >= num_of_digits:
return x
n = math.floor(math.log10(abs(x)) + 1 - n_sig_dig)
result = round(x * 10**(-n)) * 10**n
return result
And if it should be applied also to list/arrays you can vectorize it as
sig_dig_vec = np.vectorize(sig_dig)
Credit: answer inspired by this post
Upvotes: 0
Reputation: 421
Here is a version of Autumns answer which is vectorized so it can be applied to an array of floats not just a single float.
x = np.array([12345.6, 12.5673])
def sf4(x):
x = float(np.format_float_positional(x, precision=4, unique=False, fractional=False,trim='k'))
return x
vec_sf4 = np.vectorize(sf4)
vec_sf4(x)
>>>np.array([12350., 12.57])
Upvotes: 2
Reputation: 1744
For (display-) formatting in exponential notation, numpy.format_float_scientific(x, precision = n)
(where x is the number to be formatted) seems to work well. The method returns a string
. (This is similar to @Autumn's answer)
Here is an example:
>>> x = 7.92398e+05
>>> print(numpy.format_float_scientific(x, precision = 3))
7.924e+05
Here, the argument precision = n fixes the number of decimals in the mantissa (by rounding off). It is possible to re-convert back this to float
type...and that would obviously keep only the digits present in the string. It would be converted to a positional float format though... more work would be required - so I guess the re-conversion is probably quite a bad idea for large set of numbers.
Also, this doesn't work with iterables...look the docs up for more info.
Upvotes: 0
Reputation: 684
sround = lambda x,p: float(f'%.{p-1}e'%x)
>>> print( sround(123.45, 2) )
120.0
Use Scott Gigante's signif(x, p)
fig1
fig2
Upvotes: 0
Reputation: 1644
Testing all of the already proposed solutions, I find they either
Here's my attempt at a solution which should handle all of these things. (Edit 2020-03-18: added np.asarray
as suggested by A. West.)
def signif(x, p):
x = np.asarray(x)
x_positive = np.where(np.isfinite(x) & (x != 0), np.abs(x), 10**(p-1))
mags = 10 ** (p - 1 - np.floor(np.log10(x_positive)))
return np.round(x * mags) / mags
Testing:
def scottgigante(x, p):
x_positive = np.where(np.isfinite(x) & (x != 0), np.abs(x), 10**(p-1))
mags = 10 ** (p - 1 - np.floor(np.log10(x_positive)))
return np.round(x * mags) / mags
def awest(x,p):
return float(f'%.{p-1}e'%x)
def denizb(x,p):
return float(('%.' + str(p-1) + 'e') % x)
def autumn(x, p):
return np.format_float_positional(x, precision=p, unique=False, fractional=False, trim='k')
def greg(x, p):
return round(x, -int(np.floor(np.sign(x) * np.log10(abs(x)))) + p-1)
def user11336338(x, p):
xr = (np.floor(np.log10(np.abs(x)))).astype(int)
xr=10.**xr*np.around(x/10.**xr,p-1)
return xr
def dmon(x, p):
if np.all(np.isfinite(x)):
eset = np.seterr(all='ignore')
mags = 10.0**np.floor(np.log10(np.abs(x))) # omag's
x = np.around(x/mags,p-1)*mags # round(val/omag)*omag
np.seterr(**eset)
x = np.where(np.isnan(x), 0.0, x) # 0.0 -> nan -> 0.0
return x
def seanlake(x, p):
__logBase10of2 = 3.010299956639811952137388947244930267681898814621085413104274611e-1
xsgn = np.sign(x)
absx = xsgn * x
mantissa, binaryExponent = np.frexp( absx )
decimalExponent = __logBase10of2 * binaryExponent
omag = np.floor(decimalExponent)
mantissa *= 10.0**(decimalExponent - omag)
if mantissa < 1.0:
mantissa *= 10.0
omag -= 1.0
return xsgn * np.around( mantissa, decimals=p - 1 ) * 10.0**omag
solns = [scottgigante, awest, denizb, autumn, greg, user11336338, dmon, seanlake]
xs = [
1.114, # positive, round down
1.115, # positive, round up
-1.114, # negative
1.114e-30, # extremely small
1.114e30, # extremely large
0, # zero
float('inf'), # infinite
[1.114, 1.115e-30], # array input
]
p = 3
print('input:', xs)
for soln in solns:
print(f'{soln.__name__}', end=': ')
for x in xs:
try:
print(soln(x, p), end=', ')
except Exception as e:
print(type(e).__name__, end=', ')
print()
Results:
input: [1.114, 1.115, -1.114, 1.114e-30, 1.114e+30, 0, inf, [1.114, 1.115e-30]]
scottgigante: 1.11, 1.12, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, [1.11e+00 1.12e-30],
awest: 1.11, 1.11, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, TypeError,
denizb: 1.11, 1.11, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, TypeError,
autumn: 1.11, 1.11, -1.11, 0.00000000000000000000000000000111, 1110000000000000000000000000000., 0.00, inf, TypeError,
greg: 1.11, 1.11, -1.114, 1.11e-30, 1.11e+30, ValueError, OverflowError, TypeError,
user11336338: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, nan, nan, [1.11e+00 1.12e-30],
dmon: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, 0.0, inf, [1.11e+00 1.12e-30],
seanlake: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, 0.0, inf, ValueError,
Timing:
def test_soln(soln):
try:
soln(np.linspace(1, 100, 1000), 3)
except Exception:
[soln(x, 3) for x in np.linspace(1, 100, 1000)]
for soln in solns:
print(soln.__name__)
%timeit test_soln(soln)
Results:
scottgigante
135 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
awest
2.23 ms ± 430 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
denizb
2.18 ms ± 352 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
autumn
2.92 ms ± 206 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
greg
14.1 ms ± 1.21 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
user11336338
157 µs ± 50.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
dmon
142 µs ± 8.52 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
seanlake
20.7 ms ± 994 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Upvotes: 25
Reputation: 1
I like Greg's very short effective routine above. However, it suffers from two drawbacks. One is that it doesn't work for x<0
, not for me anyway. (That np.sign(x)
should be removed.) Another is that it does not work if x
is an array. I've fixed both of those problems with the routine below. Notice that I've changed the definition of n
.
import numpy as np
def Round_n_sig_dig(x, n):
xr = (np.floor(np.log10(np.abs(x)))).astype(int)
xr=10.**xr*np.around(x/10.**xr,n-1)
return xr
Upvotes: 0
Reputation: 1422
Okay, so reasonably safe to say this is not allowed for in standard functionality. To close this off then, this is my attempt at a robust solution. It's rather ugly/non-pythonic and prob illustrates better then anything why I asked this question, so please feel free to correct or beat :)
import numpy as np
def round2SignifFigs(vals,n):
"""
(list, int) -> numpy array
(numpy array, int) -> numpy array
In: a list/array of values
Out: array of values rounded to n significant figures
Does not accept: inf, nan, complex
>>> m = [0.0, -1.2366e22, 1.2544444e-15, 0.001222]
>>> round2SignifFigs(m,2)
array([ 0.00e+00, -1.24e+22, 1.25e-15, 1.22e-03])
"""
if np.all(np.isfinite(vals)) and np.all(np.isreal((vals))):
eset = np.seterr(all='ignore')
mags = 10.0**np.floor(np.log10(np.abs(vals))) # omag's
vals = np.around(vals/mags,n)*mags # round(val/omag)*omag
np.seterr(**eset)
vals[np.where(np.isnan(vals))] = 0.0 # 0.0 -> nan -> 0.0
else:
raise IOError('Input must be real and finite')
return vals
Nearest I get to neat does not account for 0.0, nan, inf or complex:
>>> omag = lambda x: 10**np.floor(np.log10(np.abs(x)))
>>> signifFig = lambda x, n: (np.around(x/omag(x),n)*omag(x))
giving:
>>> m = [0.0, -1.2366e22, 1.2544444e-15, 0.001222]
>>> signifFig(m,2)
array([ nan, -1.24e+22, 1.25e-15, 1.22e-03])
Upvotes: 2
Reputation: 1
I got quite frustrated after scouring the internet and not finding an answer for this, so I wrote my own piece of code. Hope this is what you're looking for
import numpy as np
from numpy import ma
exp = np.floor(ma.log10(abs(X)).filled(0))
ans = np.round(X*10**-exp, sigfigs-1) * 10**exp
Just plug in your np array X and the required number of significant figures. Cheers!
Upvotes: 0
Reputation: 3766
Most of the solutions given here either (a) don't give correct significant figures, or (b) are unnecessarily complex.
If your goal is display formatting, then numpy.format_float_positional supports the desired behaviour directly. The following fragment returns the float x
formatted to 4 significant figures, with scientific notation suppressed.
import numpy as np
x=12345.6
np.format_float_positional(x, precision=4, unique=False, fractional=False, trim='k')
> 12340.
Upvotes: 15
Reputation: 184
There is a simple solution that uses the logic built into pythons string formatting system:
def round_sig(f, p):
return float(('%.' + str(p) + 'e') % f)
Test with the following example:
for f in [0.01, 0.1, 1, 10, 100, 1000, 1000]:
f *= 1.23456789
print('%e --> %f' % (f, round_sig(f,3)))
which yields:
1.234568e-02 --> 0.012350
1.234568e-01 --> 0.123500
1.234568e+00 --> 1.235000
1.234568e+01 --> 12.350000
1.234568e+02 --> 123.500000
1.234568e+03 --> 1235.000000
1.234568e+03 --> 1235.000000
Best of luck!
(If you like lambdas use:
round_sig = lambda f,p: float(('%.' + str(p) + 'e') % f)
)
Upvotes: 0
Reputation: 12234
From the example numbers you have I think you mean significant figures rather than decimal places (-1.2366e22
to 0 decimal places is still -1.2366e22
).
This piece of code works for me, I've always thought there should be an inbuilt function though:
def Round_To_n(x, n):
return round(x, -int(np.floor(np.sign(x) * np.log10(abs(x)))) + n)
>>> Round_To_n(1.2544444e-15,2)
1.25e-15
>>> Round_To_n(2.128282321e3, 6)
2130.0
Upvotes: 3
Reputation: 42500
Is numpy.set_printoptions what you're looking for?
import numpy as np
np.set_printoptions(precision=2)
print np.array([ 0.0, -1.2366e22, 1.2544444e-15, 0.001222 ])
Gives:
[ 0.00e+00 -1.24e+22 1.25e-15 1.22e-03]
Edit:
numpy.around appears to solve aspects of this problem if you're trying to transform the data. However, it doesn't do what you want in cases where the exponent is negative.
Upvotes: 10