Reputation: 311
I would like to merge two DataFrames while creating a multilevel column naming scheme denoting which dataframe the rows came from. For example:
In [98]: A=pd.DataFrame(np.arange(9.).reshape(3,3),columns=list('abc'))
In [99]: A
Out[99]:
a b c
0 0 1 2
1 3 4 5
2 6 7 8
In [100]: B=A.copy()
If I use pd.merge()
, then I get
In [104]: pd.merge(A,B,left_index=True,right_index=True)
Out[104]:
a_x b_x c_x a_y b_y c_y
0 0 1 2 0 1 2
1 3 4 5 3 4 5
2 6 7 8 6 7 8
Which is what I expect with that statement, what I would like (but I don't know how to get!) is:
In [104]: <<one or more statements>>
Out[104]:
A B
a b c a b c
0 0 1 2 0 1 2
1 3 4 5 3 4 5
2 6 7 8 6 7 8
Can this be done without changing the original pd.DataFrame
calls? I am reading the data in the dataframes in from .csv files and that might be my problem.
Upvotes: 9
Views: 2216
Reputation: 128978
first case can be ordered arbitrarily among A,B (not the columns, just the order A or B) 2nd should preserve ordering
IMHO this is pandonic!
In [5]: concat(dict(A = A, B = B),axis=1)
Out[5]:
A B
a b c a b c
0 0 1 2 0 1 2
1 3 4 5 3 4 5
2 6 7 8 6 7 8
In [6]: concat([ A, B ], keys=['A','B'],axis=1)
Out[6]:
A B
a b c a b c
0 0 1 2 0 1 2
1 3 4 5 3 4 5
2 6 7 8 6 7 8
Upvotes: 8
Reputation: 375565
Here's one way, which does change A and B:
In [10]: from itertools import cycle
In [11]: A.columns = pd.MultiIndex.from_tuples(zip(cycle('A'), A.columns))
In [12]: A
Out[12]:
A
a b c
0 0 1 2
1 3 4 5
2 6 7 8
In [13]: B.columns = pd.MultiIndex.from_tuples(zip(cycle('B'), B.columns))
In [14]: A.join(B)
Out[14]:
A B
a b c a b c
0 0 1 2 0 1 2
1 3 4 5 3 4 5
2 6 7 8 6 7 8
I actually think this would be a good alternative behaviour, rather than suffixes...
Upvotes: 6