Reputation: 10459
I would like to write a template function which behaves one way if the passed type is derived from any template instantiation of another class, and another way if not.
I think the code below captures what I would like to do. Unfortunately Caller prints "generic" for both double
and Derived
.
#include <iostream>
template <typename T>
struct Base
{
};
struct Derived
:
public Base<int>
{
};
template <typename T>
void Foo(const T&)
{
std::cout << "generic" << std::endl;
}
template <typename T>
void Foo(const Base<T>&)
{
std::cout << "derives from Base<T>" << std::endl;
}
template <typename T>
void Caller(const T& t)
{
Foo(t);
}
int main()
{
double x;
Caller(x);
Derived d;
Caller(d);
return 0;
}
(Note that Caller doesn't know which instantiation of Base
that its parameter might derive from.)
Upvotes: 4
Views: 1538
Reputation: 2904
If you're able to use C++11 (or <type_traits>
in general), the following is also a possible solution and covers not only types T : Base<T>
, i.e. instances of the CRTP, but also T : Base<U>
without another base class, as requested in your example.
#include <iostream>
#include <type_traits>
template <typename T>
struct Base
{
typedef T base_value_type;
};
struct Derived : public Base<int>
{
};
template <typename T, typename = T>
struct IsDerived
{
static const bool value = false;
};
template <typename T>
struct IsDerived<T, typename std::enable_if<std::is_base_of<Base<typename T::base_value_type>, T>::value, T>::type>
{
static const bool value = true;
};
template <typename T>
void Caller(const T&)
{
std::cout << IsDerived<T>::value << std::endl;
}
int main()
{
Caller(double()); // false
Caller(Derived()); // true
return 0;
}
Note the typedef T base_value_type
- which might be called whatever your like. The idea is that each type T
derived from Base<U>
can leverage the knowledge of the base's template parameter. It doesn't matter if T == U
or not. Trying to substitute the second parameter will fail as soon as you pass in a T
that has no typedef T base_value_type
and thus no specialization for this particular T
will be generated.
EDIT: After processing your comment, and inspired by the thread I posted, I tried to somehow extract some base parameter U
when examining some time type T : Base<U>
. I don't think this can be done in the way you want, i.e. you pass whatever T
and you extract U
. However, you can do two things.
Simple Solution: If you have control over how derived classes are implemented, instead of adding a typedef
in the base class, simply add a corresponding typedef in the derived class:
template <typename BaseParamType>
class Derived : public Base<BaseParamType>
{
public:
typedef BaseParamType base_param_type;
}
or, if you don't want derived classes to be class templates as well, simply hard code the type right into the type (you already know the type of the base parameter):
class Derived : public Base<int>
{
public:
typedef int base_param_type;
}
More involved solution: What you can do, at least for an expected subset of possible U
s, is the following:
template <typename DerivedType,
typename BaseParamType = DerivedType,
bool = std::is_base_of<Base<BaseParamType>, DerivedType>::value>
struct Extract
{
typedef BaseParamType type;
};
template <typename T, typename U>
struct Extract<T, U, false>;
int main()
{
Extract<DerivedCRTP>::type; // CRTP - trivial
Extract<Derived, int>::type; // type == int, Derived is derived from Base<int>
Extract<Derived, double>::type; // compile-time error, undefined template
return 0;
}
This isn't as convenient as passing some instance of a type to a deducing template function and have it magically , but you can at least test if some type T
derives from Base<U>
and get a compile-time error if it doesn't.
Upvotes: 2
Reputation: 64253
Since the base class has to be a concrete class (not a template), it is not possible to know whether it is a template or a non-template class.
In another words :
struct A1 : public B1
{};
struct A2 : public B2<int>
{};
in both of these cases both base classes are concrete types.
Upvotes: 0
Reputation: 14400
It's calling the const T&
overload because its a better match than const base<T>&
. The reason is because calling the first requires no conversions and the second requires a derived-to-base conversion.
Here's a quick hack that shows you how it can be done (note the introduced base class):
#include <iostream>
#include <type_traits>
struct EvenMoreBase {};
template <typename T>
struct Base : EvenMoreBase
{
};
struct Derived
:
public Base<int>
{
};
template <typename T>
typename std::enable_if<!std::is_base_of<EvenMoreBase, T>::value>::type
Foo(const T&)
{
std::cout << "generic" << std::endl;
}
template <typename T>
void Foo(const Base<T>&)
{
std::cout << "derives from Base<T>" << std::endl;
}
template <typename T>
void Caller(const T& t)
{
Foo(t);
}
int main()
{
double x;
Caller(x);
Derived d;
Caller(d);
return 0;
}
Upvotes: 2