Reputation: 4388
So I am working on a function that detects if two binary trees have the same numbers in them.
So what I've come up with is the following which works just fine but the problem is that I am using total of 5 functions. Is there another way of detecting if two BT's have the same elements with just one function ? Here is my solution so far which seems to work just fine.
flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l x r) = flatten l ++ [x] ++ flatten r
splt :: Int -> [a] -> ([a], [a])
splt 0 xs = ([], xs)
splt _ [] = ([],[])
splt n (x:xs) = (\ys-> (x:fst ys, snd ys)) (splt (n-1) xs)
merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = if (x > y) then y:merge (x:xs) ys else x:merge xs(y:ys)
msort :: Ord a => [a] -> [a]
msort [] =[]
msort (x:[]) = (x:[])
msort xs = (\y -> merge (msort (fst y)) (msort (snd y))) (splt (length xs `div` 2) xs)
areTreesEqual :: (Ord a) => BinTree a -> BinTree a-> Bool
areTreesEqual Empty Empty = True
areTreesEqual Empty a = False
areTreesEqual a Empty = False
areTreesEqual a b = msort (flatten (a) ) == msort (flatten (b))
Upvotes: 0
Views: 1346
Reputation: 53911
How about
import Data.MultiSet as Set
equal a b = accum a == accum b
where accum Empty = Set.empty
accum (Node l x r) = Set.insert x (accum l `Set.union` accum r)
Sets are lovely for unordered comparison and multisets will make sure that
1 /= 1
1 1
Eg, that duplicate numbers are counted properly. If this isn't a big concern, than swap MultiSet
for Set
. I think 3 lines is pretty decent for this sort of thing.
Upvotes: 1