Reputation: 4241
I am attempting a merge between two data frames. Each data frame has two index levels (date, cusip). In the columns, some columns match between the two (currency, adj date) for example.
What is the best way to merge these by index, but to not take two copies of currency and adj date.
Each data frame is 90 columns, so I am trying to avoid writing everything out by hand.
df: currency adj_date data_col1 ...
date cusip
2012-01-01 XSDP USD 2012-01-03 0.45
...
df2: currency adj_date data_col2 ...
date cusip
2012-01-01 XSDP USD 2012-01-03 0.45
...
If I do:
dfNew = merge(df, df2, left_index=True, right_index=True, how='outer')
I get
dfNew: currency_x adj_date_x data_col2 ... currency_y adj_date_y
date cusip
2012-01-01 XSDP USD 2012-01-03 0.45 USD 2012-01-03
Thank you! ...
Upvotes: 193
Views: 334688
Reputation: 2130
I use the suffixes
option in .merge()
followed by drop()
:
dfNew = df.merge(df2, left_index=True, right_index=True,
how='outer', suffixes=('', '_y'))
dfNew.drop(dfNew.filter(regex='_y$').columns, axis=1, inplace=True)
Thanks @ijoseph
Upvotes: 198
Reputation: 5961
If the indexes are the same (big if true!) you can do:
df = df1.copy()
df[df2.columns] = df2
this similar to merge
pd.merge(df1, df2, index_left=True, index_right=True)
but with no duplicate columns
Upvotes: 3
Reputation: 41
If you're merging on arbitrary columns and don't want to keep the right key this will do the trick:
mrg = pd.merge(a, b, how="left", left_on="A_KEY", right_on="B_KEY")
mrg.drop(columns=b.columns.difference(cols_to_use))
Upvotes: 0
Reputation: 1387
You can remove the duplicate y
columns you don't want after the join:
# Join df and df2
dfNew = merge(df, df2, left_index=True, right_index=True, how='inner')
Output: currency_x | adj_date_x | data_col1 | ... | currency_y | adj_date_y | data_col2
# Remove the y columns by selecting the columns you want to keep
dfNew = dfNew.loc[:, ("currency_x", "adj_date_x", "data_col1", "data_col2")]
Output: currency_x | adj_date_x | data_col1 | data_col2
Upvotes: 2
Reputation: 9887
You can include duplicate columns in the key to merge on to ensure only a single copy appears in the result.
# Generate some dummy data.
shared = pd.DataFrame({'key': range(5), 'name': list('abcde')})
a = shared.copy()
a['value_a'] = np.random.normal(0, 1, 5)
b = shared.copy()
b['value_b'] = np.random.normal(0, 1, 5)
# Standard merge.
merged = pd.merge(a, b, on='key')
print(merged.columns) # Index(['key', 'name_x', 'value_a', 'name_y', 'value_b'], dtype='object')
# Merge with both keys.
merged = pd.merge(a, b, on=['key', 'name'])
print(merged.columns) # Index(['key', 'name', 'value_a', 'value_b'], dtype='object')
This method also ensures that values in columns that appear in both data frames are consistent (e.g. that the currency in both columns is the same). If they are not, the corresponding row will be dropped (if how = 'inner'
) or occur with missing values (if how = 'outer'
).
Upvotes: 0
Reputation: 507
When the amount of columns you want to avoid is lower than the columns you want to keep... you could use this kind of filtering:
df.loc[:, ~df.columns.isin(['currency', 'adj_date'])]
This will filter all columns in the dataframe except the 'currency' and 'adj_date' columns, you have to write the merge something like this:
dfNew = merge(df,
df2.loc[:, ~df.columns.isin(['currency', 'adj_date'])],
left_index=True,
right_index=True,
how='outer')
Note the "~", it means "not".
Upvotes: 0
Reputation: 514
can't you just subset the columns in either df first?
[i for i in df.columns if i not in df2.columns]
dfNew = merge(df **[i for i in df.columns if i not in df2.columns]**, df2, left_index=True, right_index=True, how='outer')
Upvotes: 0
Reputation: 13841
This is a bit of going around the problem, but I have written a function that basically deals with the extra columns:
def merge_fix_cols(df_company,df_product,uniqueID):
df_merged = pd.merge(df_company,
df_product,
how='left',left_on=uniqueID,right_on=uniqueID)
for col in df_merged:
if col.endswith('_x'):
df_merged.rename(columns = lambda col:col.rstrip('_x'),inplace=True)
elif col.endswith('_y'):
to_drop = [col for col in df_merged if col.endswith('_y')]
df_merged.drop(to_drop,axis=1,inplace=True)
else:
pass
return df_merged
Seems to work well with my merges!
Upvotes: 3
Reputation: 770
Building on @rprog's answer, you can combine the various pieces of the suffix & filter step into one line using a negative regex:
dfNew = df.merge(df2, left_index=True, right_index=True,
how='outer', suffixes=('', '_DROP')).filter(regex='^(?!.*_DROP)')
Or using df.join
:
dfNew = df.join(df2, lsuffix="DROP").filter(regex="^(?!.*DROP)")
The regex here is keeping anything that does not end with the word "DROP", so just make sure to use a suffix that doesn't appear among the columns already.
Upvotes: 28
Reputation: 394459
You can work out the columns that are only in one DataFrame and use this to select a subset of columns in the merge.
cols_to_use = df2.columns.difference(df.columns)
Then perform the merge (note this is an index object but it has a handy tolist()
method).
dfNew = merge(df, df2[cols_to_use], left_index=True, right_index=True, how='outer')
This will avoid any columns clashing in the merge.
Upvotes: 238
Reputation: 3652
I'm freshly new with Pandas but I wanted to achieve the same thing, automatically avoiding column names with _x or _y and removing duplicate data. I finally did it by using this answer and this one from Stackoverflow
sales.csv
city;state;units Mendocino;CA;1 Denver;CO;4 Austin;TX;2
revenue.csv
branch_id;city;revenue;state_id 10;Austin;100;TX 20;Austin;83;TX 30;Austin;4;TX 47;Austin;200;TX 20;Denver;83;CO 30;Springfield;4;I
merge.py import pandas
def drop_y(df):
# list comprehension of the cols that end with '_y'
to_drop = [x for x in df if x.endswith('_y')]
df.drop(to_drop, axis=1, inplace=True)
sales = pandas.read_csv('data/sales.csv', delimiter=';')
revenue = pandas.read_csv('data/revenue.csv', delimiter=';')
result = pandas.merge(sales, revenue, how='inner', left_on=['state'], right_on=['state_id'], suffixes=('', '_y'))
drop_y(result)
result.to_csv('results/output.csv', index=True, index_label='id', sep=';')
When executing the merge command I replace the _x
suffix with an empty string and them I can remove columns ending with _y
output.csv
id;city;state;units;branch_id;revenue;state_id 0;Denver;CO;4;20;83;CO 1;Austin;TX;2;10;100;TX 2;Austin;TX;2;20;83;TX 3;Austin;TX;2;30;4;TX 4;Austin;TX;2;47;200;TX
Upvotes: 7