Reputation: 727
I'm trying to join two DataFrames in pandas on two fields, 'date_key' and 'user_uuid', but when I do I only get an empty set, despite there being overlap when I search the tables for matches.
DataFrame one (icloset) looks like:
In [167]: icloset.head()
Out[167]:
count ASL75
date_key user_uuid
20130917 000a26bf-e7ff-3124-9b00-b227ee155e7f 11 9.03510
0017b444-83f7-3adb-9727-926de4041731 3 45.05510
0022c69b-f1f5-301e-812d-89725e17c9dd 19 31.71980
00453fcd-93bd-373e-9248-f821ce8279f2 10 17.68785
004a050d-f855-3c9c-bfe0-5c504df965bc 8 45.20115
DataFrame two (definedRIDs) looks like:
In [170]: definedRIDs.head()
Out[170]:
rid user_uuid rid_slots last48status bad_RID \
0 48830 2eda12da-d613-3e1e-95de-de3c75a5f9ef 1 Fulfilling False
1 51025 a466303a-d66d-3db8-b640-c4d57d134404 1 Fulfilling False
2 51457 c41d87d3-8abc-328d-ae00-c63d7cf81ef2 1 Fulfilled False
3 48626 97ff5c81-e5df-30ac-9b7a-bda73fbf499f 1 Fulfilled False
4 51450 0ac72f09-0fb7-35ae-b8a2-ee6d131100b0 1 Fulfilled False
date_key
0 20130924
1 20130927
2 20130927
3 20130923
4 20130927
I made sure to strip out the index of definedRIDs so that it looks like this example from the docs.
For some reason when I try to replicate the example in the docs, I get empty results in the merged fields (count and ASL75):
In [171]: definedRIDs.join(icloset,on=['date_key','user_uuid'])
Out[171]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7623 entries, 0 to 7622
Data columns (total 8 columns):
rid 7623 non-null values
user_uuid 7623 non-null values
rid_slots 7623 non-null values
last48status 7623 non-null values
bad_RID 7623 non-null values
date_key 7623 non-null values
count 0 non-null values
ASL75 0 non-null values
dtypes: bool(1), float64(2), object(5)
But when I exported the dataframes to csv files and searched them by hand, I had user_uuid and date_key combos in both files that matched. Any ideas on why I'm having this mismatch on the join?
Thank you
Upvotes: 0
Views: 2329
Reputation: 727
Looks like I just needed to make sure the types on the keys were both dtype=object.
The correct solution was in fact to join the frame with no index (on the left) to the frame with the multindex on the right:
closet['date_key']=closet['date_key'].astype(str)
definedRIDS['date_key'] = definedRIDS['date_key'].astype(str)
icloset = closet.set_index(['date_key','user_uuid'])
RIDdata = definedRIDs.join(icloset,on=['date_key','user_uuid'],how='inner')
Hope this helps someone else not make this mistake later, and clarifies joins with indexing a little.
Upvotes: 0
Reputation: 46616
Reset the index on the icloset
DataFrame. When you specified the on
parameter, it tries to match the columns, but there is no date_key
nor user_uuid
column in the icloset
frame (since they are in the index) so it can't find a match.
definedRIDs.join(icloset.reset_index(),
on=['date_key','user_uuid'])
If you're using the on
parameter, the values passed in should be column names.
Upvotes: 3