Reputation: 19699
I am unsure whether there is a generic answer for this, but I was wondering what the normal Java GC pattern and java heap space usage looks like. I am testing my Java 1.6 application using JMeter. I am collecting JMX GC logs and plotting them with JMeter JMX GC and Memory plugin extension. The GC pattern looks quite stable with most GC operations being 30-40ms, occasional 90ms. The memory consumption goes in a saw-tooth pattern. The JHS usage grows constantly upwards e.g. to 3GB and every 40 minutes the memory usage does a free-fall drop down to around 1GB. The max-min delta however grows, so the sawtooth height constantly grows. Does it do a full GC every 40mins?
Upvotes: 2
Views: 1884
Reputation: 533492
yes, most likely. Instead of guessing you can use jstat
to monitor your GCs.
I suggest you use a memory profiler to ensure there is nothing simple you can do ti improve the amount of garbage you are producing.
BTW, If you increase the size of the young generation, you can reduce how much garbage makes it into the tenured space reducing the frequency of full collections. You may find you less than one full collection per day if you tune it enough.
For a more extreme case, I have tuned a trading system to less than one collection per day (minor or major)
Upvotes: 0
Reputation: 3119
Most of your descriptions in general, are how the GC works. However, none of your specific observations, especially numbers, hold for general case.
To start with, each JVM has one or several GC implementations and you could choose which one to use. Take the mostly applied one i.e. SUN JVM (I like to call it this way) and the common server GC pattern as example.
Firstly, the memory are divided into 4 regions.
A young generation which holds all of the recently created objects. When this generation is full, GC does a stop-the-world collection by stopping your program from working, execute a black-gray-white algorithm and get the obselete objects and remove them. So this is your 30-40 ms.
If an object survived a certain rounds of GC in the young gen, it would be moved into a swap generation. The swap generation holds the objects until another number of GCs - then move them to the old generation. There are 2 swap generations which does a double buffering kind of thing to facilitate the young gen to work faster. If young gen dumps stuff to swap gen and found swap gen is mostly full, a GC would happen on swap gen and potentially move the survived objects to old gen. This most likely makes your 90ms, though I am not 100% sure how swap gen works. Someone correct me if I am wrong.
All the objects survived swap gen would be moved to the old generation. The old generation would only be GC-ed until it's mostly full. In your case, every 40 min.
There is another "permanent gen" which is used to load your jar target byte code and resources.
All size of the areas can be adjusted by JVM parameters.
You can try to use VisualVM which would give you a dynamic idea of how it works.
P.S. not all JVM / GC works the same way. If you use G1 collector, or JRocket, it might happens slightly different, but the general idea holds.
Upvotes: 1
Reputation: 4534
Java GC work in terms of generations of objects. There are young, tenure and permament generations. It seems like in your case: every 30-40ms GC process only young generation (and transfers survived objects into tenure generation). And every 40 mins it performs full collecting (it causes stop-the-world pause). Note: it happens not by time, but by percentage of used memory.
There are several JVM options, which allows you to chose generation's sizes, type of GC (there are several algorithms for GC, in java 1.6 Serial GC is used by default, for example -XX:-UseConcMarkSweepGC), parameters of GC work.
You'd better try to find good articles about generations and different types of GC (algorithms are really different, some of them allow to avoid stop-the-world pauses at all!)
Upvotes: 0