Reputation: 513
I was looking in detail at the Thread class. Basically, I was looking for an elegant mechanism to allow thread-local variables to be inherited as threads are created. For example the functionality I am looking to create would ensure that
Thread.new do
self[:foo]="bar"
t1=Thread.new { puts self[:foo] }
end
=> "bar"
i.e. a Thread would inherit it's calling thread's thread-local variables
So I hit upon the idea of redefining Thread.new, so that I could add an extra step to copy the thread-local variables into the new thread from the current thread. Something like this:
class Thread
def self.another_new(*args)
o=allocate
o.send(:initialize, *args)
Thread.current.keys.each{ |k| o[k]=Thread.current[k] }
o
end
end
But when I try this I get the following error:
:in `allocate': allocator undefined for Thread (TypeError)
I thought that as Thread is a subclass of Object, it should have a working #allocate method. Is this not the case?
Does anyone have any deep insight on this, and on how to achieve the functionality I am looking for.
Thanks in advance
Steve
Upvotes: 3
Views: 194
Reputation: 357
I was looking for the same thing recently and was able to come up with the following answer. Note I am aware the following is a hack and not recommended, but for the sake of answering the specific question on how you could alter the Thread.new
functionality, I have done as following:
class Thread
class << self
alias :original_new :new
def new(*args, **options, &block)
original_thread = Thread.current
instance = original_new(*args, **options, &block)
original_thread.keys.each do |key|
instance[key] = original_thread[key]
end
instance
end
end
end
Upvotes: 0
Reputation: 513
Here is a revised answer based on @CodeGroover's suggestion, with a simple unit test harness
class Thread
def self.inherit(*args, &block)
parent = Thread.current
t = Thread.new(parent, *args) do |parent|
parent.keys.each{ |k| Thread.current[k] = parent[k] }
yield *args
end
t
end
end
require 'test/unit'
require 'ext/thread'
class ThreadTest < Test::Unit::TestCase
def test_inherit
Thread.current[:foo]=1
m=Mutex.new
#check basic inheritence
t1= Thread.inherit do
assert_equal(1, Thread.current[:foo])
end
#check inheritence with parameters - in this case a mutex
t2= Thread.inherit(m) do |m|
assert_not_nil(m)
m.synchronize{ Thread.current[:bar]=2 }
assert_equal(1, Thread.current[:foo])
assert_equal(2, Thread.current[:bar])
sleep 0.1
end
#ensure t2 runs its mutexs-synchronized block first
sleep 0.05
#check that the inheritence works downwards only - not back up in reverse
m.synchronize do
assert_nil(Thread.current[:bar])
end
[t1,t2].each{|x| x.join }
end
end
Upvotes: 0
Reputation: 2187
Thread.new do
Thread.current[:foo]="bar"
t1=Thread.new(Thread.current) do |parent|
puts parent[:foo] ? parent[:foo] : 'nothing'
end.join
end.join
#=> bar
UPDATED:
Try this in irb:
class Thread
def self.another_new(*args)
parent = Thread.current
a = Thread.new(parent) do |parent|
parent.keys.each{ |k| Thread.current[k] = parent[k] }
yield
end
a
end
end
A = Thread.new do
Thread.current[:local_a]="A"
B1 =Thread.another_new do
C1 = Thread.another_new{p Thread.current[:local_a] }.join
end
B2 =Thread.another_new do
C2 = Thread.another_new{p Thread.current[:local_a] }.join
end
[B1, B2].each{|b| b.join }
end.join
"A"
"A"
Upvotes: 1