Reputation: 2333
I have a dataframe with unix times and prices in it. I want to convert the index column so that it shows in human readable dates.
So for instance I have date
as 1349633705
in the index column but I'd want it to show as 10/07/2012
(or at least 10/07/2012 18:15
).
For some context, here is the code I'm working with and what I've tried already:
import json
import urllib2
from datetime import datetime
response = urllib2.urlopen('http://blockchain.info/charts/market-price?&format=json')
data = json.load(response)
df = DataFrame(data['values'])
df.columns = ["date","price"]
#convert dates
df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
df.index = df.date
As you can see I'm using
df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
here which doesn't work since I'm working with integers, not strings. I think I need to use datetime.date.fromtimestamp
but I'm not quite sure how to apply this to the whole of df.date
.
Thanks.
Upvotes: 224
Views: 337876
Reputation: 2078
The Pandas Documentation gives this and other format examples and wasn't included in any of the above previous answers. Link: https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html
Code
pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
Upvotes: 20
Reputation: 2648
Alternatively, by changing a line of the above code:
# df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
df.date = df.date.apply(lambda d: datetime.datetime.fromtimestamp(int(d)).strftime('%Y-%m-%d'))
It should also work.
Upvotes: 2
Reputation: 686
Assuming we imported pandas as pd
and df
is our dataframe
pd.to_datetime(df['date'], unit='s')
works for me.
Upvotes: 44
Reputation: 1268
If you try using:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],***unit='s'***))
and receive an error :
"pandas.tslib.OutOfBoundsDatetime: cannot convert input with unit 's'"
This means the DATE_FIELD
is not specified in seconds.
In my case, it was milli seconds - EPOCH time
.
The conversion worked using below:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],unit='ms'))
Upvotes: 113
Reputation: 128958
These appear to be seconds since epoch.
In [20]: df = DataFrame(data['values'])
In [21]: df.columns = ["date","price"]
In [22]: df
Out[22]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 358 entries, 0 to 357
Data columns (total 2 columns):
date 358 non-null values
price 358 non-null values
dtypes: float64(1), int64(1)
In [23]: df.head()
Out[23]:
date price
0 1349720105 12.08
1 1349806505 12.35
2 1349892905 12.15
3 1349979305 12.19
4 1350065705 12.15
In [25]: df['date'] = pd.to_datetime(df['date'],unit='s')
In [26]: df.head()
Out[26]:
date price
0 2012-10-08 18:15:05 12.08
1 2012-10-09 18:15:05 12.35
2 2012-10-10 18:15:05 12.15
3 2012-10-11 18:15:05 12.19
4 2012-10-12 18:15:05 12.15
In [27]: df.dtypes
Out[27]:
date datetime64[ns]
price float64
dtype: object
Upvotes: 391