Reputation: 7090
Just got started on multithreading (and multithreading in general) using C++11 threading library, and and wrote small short snipped of code.
#include <iostream>
#include <thread>
int x = 5; //variable to be effected by race
//This function will be called from a thread
void call_from_thread1() {
for (int i = 0; i < 5; i++) {
x++;
std::cout << "In Thread 1 :" << x << std::endl;
}
}
int main() {
//Launch a thread
std::thread t1(call_from_thread1);
for (int j = 0; j < 5; j++) {
x--;
std::cout << "In Thread 0 :" << x << std::endl;
}
//Join the thread with the main thread
t1.join();
std::cout << x << std::endl;
return 0;
}
Was expecting to get different results every time (or nearly every time) I ran this program, due to race between two threads. However, output is always: 0
, i.e. two threads run as if they ran sequentially. Why am I getting same results and is there any ways to simulate or force race between two threads ?
Upvotes: 4
Views: 371
Reputation: 66254
Your sample size is rather small, and somewhat self-stalls on the continuous stdout flushes. In short, you need a bigger hammer.
If you want to see a real race condition in action, consider the following. I purposely added an atomic and non-atomic counter, sending both to the threads of the sample. Some test-run results are posted after the code:
#include <iostream>
#include <atomic>
#include <thread>
#include <vector>
void racer(std::atomic_int& cnt, int& val)
{
for (int i=0;i<1000000; ++i)
{
++val;
++cnt;
}
}
int main(int argc, char *argv[])
{
unsigned int N = std::thread::hardware_concurrency();
std::atomic_int cnt = ATOMIC_VAR_INIT(0);
int val = 0;
std::vector<std::thread> thrds;
std::generate_n(std::back_inserter(thrds), N,
[&cnt,&val](){ return std::thread(racer, std::ref(cnt), std::ref(val));});
std::for_each(thrds.begin(), thrds.end(),
[](std::thread& thrd){ thrd.join();});
std::cout << "cnt = " << cnt << std::endl;
std::cout << "val = " << val << std::endl;
return 0;
}
Some sample runs from the above code:
cnt = 4000000
val = 1871016
cnt = 4000000
val = 1914659
cnt = 4000000
val = 2197354
Note that the atomic counter is accurate (I'm running on a duo-core i7 macbook air laptop with hyper threading, so 4x threads, thus 4-million). The same cannot be said for the non-atomic counter.
Upvotes: 8
Reputation: 959
There will be significant startup overhead to get the second thread going, so its execution will almost always begin after the first thread has finished the for loop, which by comparison will take almost no time at all. To see a race condition you will need to run a computation that takes much longer, or includes i/o or other operations that take significant time, so that the execution of the two computations actually overlap.
Upvotes: 3