Reputation: 2800
I am trying to write a function that would create a regular grid of 5 pixels by 5 pixels inside a 2d array. I was hoping some combination of numpy.arange
and numpy.repeat
might do it, but so far I haven't had any luck because numpy.repeat
will just repeat along the same row.
Here is an example:
Let's say I want a 5x5 grid inside a 2d array of shape (20, 15)
. It should look like:
array([[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 9, 9, 9, 9, 9,10,10,10,10,10,11,11,11,11,11],
[ 9, 9, 9, 9, 9,10,10,10,10,10,11,11,11,11,11],
[ 9, 9, 9, 9, 9,10,10,10,10,10,11,11,11,11,11],
[ 9, 9, 9, 9, 9,10,10,10,10,10,11,11,11,11,11],
[ 9, 9, 9, 9, 9,10,10,10,10,10,11,11,11,11,11]])
I realize I could simply use a loop and slicing to accomplish this, but I could be applying this to very large arrays and I worry that the performance of that would be too slow or impractical.
Can anyone recommend a method to accomplish this?
Thanks in advance.
UPDATE:
All the answers provided seem to work well. Can anyone tell me which will be the most efficient to use for large arrays? By large array I mean it could be 100000 x 100000
or more with 15 x 15
grid cell sizes.
Upvotes: 6
Views: 1552
Reputation: 69242
kron
will do this expansion (as Brionius also suggested in the comments):
xi, xj, ni, nj = 5, 5, 4, 3
r = np.kron(np.arange(ni*nj).reshape((ni,nj)), np.ones((xi, xj)))
Although I haven't tested it, I assume it's less efficient than the broadcasting approach, but a bit more concise and easier to understand (I hope). It's likely less efficient because: 1) it requires the array of ones, 2) it does xi*xj
multiplications by 1, and 3) it does a bunch of concats.
Upvotes: 2
Reputation: 32521
Similar to Jaime's answer:
np.repeat(np.arange(0, 10, 3), 4)[..., None] + np.repeat(np.arange(3), 5)[None, ...]
Upvotes: 3
Reputation: 67497
Broadcasting is the answer here:
m, n, d = 20, 15, 5
arr = np.empty((m, n), dtype=np.int)
arr_view = arr.reshape(m // d, d, n // d, d)
vals = np.arange(m // d * n // d).reshape(m // d, 1, n // d, 1)
arr_view[:] = vals
>>> arr
array([[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8],
[ 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11],
[ 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11],
[ 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11],
[ 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11],
[ 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11]])
Upvotes: 3