Reputation: 1148
I am trying to generate a quality control report that loops (sapply) over several folders (each one corresponds to an experiment), and for each load results, create tables and plots (inside a function). The resulting pdf should contain the name of the folder followed by tables and plots in order. I first created the R script (which runs nicely) and then created a rnw file. The plots are indeed generated but there are 2 problems (pdf outpout):
in the chunk loop_n_plots no tables are generated;
after all plots have been created there is an unintended jumbled line which looks like the output of a list.
Q: How do I get the tables in my pdf? The table which is generated in the chunk "table_files" works, but those inside the apply function don't. Why? More generally, is what I am trying to do (amd how am I doing it) ok for knitr reports? Would it be best to add tables and plots in a list and then loop over the list to print them?
I have played for while now with the chunk settings but nothing worked.
Sample code:
\documentclass{report}
\begin{document}
\title{Sequencing Quality Report}
\author{Deep Sequencing Group - SFB655}
\maketitle
<<knitr_option, cache=FALSE, echo=FALSE, results='hide'>>=
library(knitr)
## set global chunk options
opts_chunk$set(fig.align='center', fig.width=14, fig.heigth=8, out.width="1.2\\textwidth", par=TRUE)
@
<<R_arguments, cache=FALSE, echo=FALSE, include=FALSE>>=
###### Libraries ######
library(reshape)
library(ggplot2)
theme_set(theme_bw(16)) # removes grey grid and increases letter size. Ideal for presentations
library(RColorBrewer)
library(plyr)
library(scales) # for natural numbers in axis
library(xtable)
library(rattle) # needed to generate a table in knitr?
#######################
###### Function definitions ######
## ggplot theme with extra space between legends and axis
gg.axis.space <- theme(axis.title.y=element_text(vjust=0.2), axis.title.x=element_text(vjust=0.2))
ReturnStatsPlotsAndTables <- function(fqc.folder){
# for(fqc.folder in fq_fastqc.folders){
######################################
## for each folder in the vector will
## plot stats and
## print tables of fastQC results
## which library is being analysed?
fastq.lib <- data.frame(Libraries = gsub(".*/(L.*)\\.fq_fastqc", "\\1", fqc.folder, perl=T))
xtable(fastq.lib)
## Basic statistics - table ##
stats.path <- paste(fqc.folder, "/", "Basic_Statistics_fastqc_data.temp", sep="")
basic.stats <- read.table(stats.path, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
# basic.stats[ ,1:2]
xtable(basic.stats[ ,1:2])
## Summary of filters - table ##
stats.path <- paste(fqc.folder, "/", "filters_summary_fastqc_data.temp", sep="")
summary.filters <- read.table(stats.path,
header = TRUE, sep = "\t", stringsAsFactors = FALSE)
# summary.filters
xtable(summary.filters)
## Per base sequence quality ##
stats.path <- paste(fqc.folder, "/", "Per_base_sequence_quality_fastqc_data.temp", sep="")
base.qual <- read.table(stats.path,
header = TRUE, sep = "\t", stringsAsFactors = FALSE)
base.qual$Base <- factor(base.qual$Base, as.character(base.qual$Base)) # re-order the levels by order of appearance in DF
plot.new()
base.qual.p <- ggplot(base.qual, aes(x = Base, ymin = X10th.Percentile, lower = Lower.Quartile, middle = Median, upper = Upper.Quartile, ymax = X90th.Percentile, fill = Lower.Quartile)) + geom_boxplot(stat = "identity") +
theme(axis.text.x = element_text(angle=30, hjust=1, vjust=1)) +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=0, ymax=20, alpha=0.1, fill="red") +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=20, ymax=28, alpha=0.1, fill="yellow") +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=28, ymax=Inf, alpha=0.1, fill="green") +
ggtitle("Per base sequence quality") + ylab("Quality score (Phred score) ") + xlab("Position of base in read")
print(base.qual.p)
}
@
\chapter{Preamble}
This an automated quality control report generated for the following fastq files:
<<table_files, echo=FALSE, results="asis">>=
##############################################
## loop over fastQC folder and parse txt files:
## list and read fastqc_data.temp old files
# testing #
# setwd("/projects/seq-work/analysis/martinad/p0196-totalRNA/")
folder <- "./"
filenames <- list.files(path=folder, pattern="fastqc_data.temp", recursive=TRUE)
fq_fastqc.folders <- unique(dirname(filenames)) # the folders that contain fastQC
fastq.libs <- data.frame(Libraries = gsub(".*/(L.*)\\.fq_fastqc", "\\1", fq_fastqc.folders, perl=T))
xtable(fastq.libs)
@
\chapter{FastQC}
<<loop_n_plots, echo=FALSE, results='asis'>>=
## do the plotting
sapply(fq_fastqc.folders[1:3], ReturnStatsPlotsAndTables)
@
\end{document}
The function ReturnStatsPlotsAndTables is actually longer this is enough to give an idea of what is happening.
Upvotes: 2
Views: 677
Reputation: 1148
Found the solution which has 2 steps:
replace the sapply with a for loop which contains the instruction of the function ReturnStatsPlotsAndTables;
inside the for loop the tables need to be explicitly printed using:
print(xtable(fastq.lib))
Here is the final code:
\documentclass{report}
\begin{document}
\title{Sequencing Quality Report}
\author{Deep Sequencing Group - SFB655}
\maketitle
<<knitr_option, cache=FALSE, echo=FALSE, results='hide'>>=
library(knitr)
## set global chunk options
opts_chunk$set(fig.align='center', fig.width=14, fig.heigth=8, out.width="1.2\\textwidth", par=TRUE)
@
<<R_arguments, cache=FALSE, echo=FALSE, include=FALSE>>=
###### Libraries ######
library(reshape)
library(ggplot2)
theme_set(theme_bw(16)) # removes grey grid and increases letter size. Ideal for presentations
library(RColorBrewer)
library(plyr)
library(scales) # for natural numbers in axis
library(xtable)
library(rattle) # needed to generate a table in knitr?
#######################
###### Function definitions ######
## ggplot theme with extra space between legends and axis
gg.axis.space <- theme(axis.title.y=element_text(vjust=0.2), axis.title.x=element_text(vjust=0.2))
@
\chapter{Preamble}
This an automated quality control report generated for the following fastq files:
<<table_files, echo=FALSE, results="asis">>=
##############################################
## loop over fastQC folder and parse txt files:
## list and read fastqc_data.temp old files
# testing #
# setwd("/projects/seq-work/analysis/martinad/p0196-totalRNA/")
folder <- "./"
filenames <- list.files(path=folder, pattern="fastqc_data.temp", recursive=TRUE)
fq_fastqc.folders <- unique(dirname(filenames)) # the folders that contain fastQC
fastq.libs <- data.frame(Libraries = gsub(".*/(L.*)\\.fq_fastqc", "\\1", fq_fastqc.folders, perl=T))
xtable(fastq.libs)
@
\chapter{FastQC}
<<loop_n_plots, echo=FALSE, results="asis">>=
## do the plotting
# sapply(fq_fastqc.folders[1:3], ReturnStatsPlotsAndTables)
for (fqc.folder in fq_fastqc.folders[1:2]){
# for(fqc.folder in fq_fastqc.folders){
######################################
## for each folder in the vector will
## plot stats and
## print tables of fastQC results
# print(fqc.folder)
## which library is being analysed?
fastq.lib <- data.frame(Libraries = gsub(".*/(L.*)\\.fq_fastqc", "\\1", fqc.folder, perl=T))
print(xtable(fastq.lib))
## Basic statistics - table ##
stats.path <- paste(fqc.folder, "/", "Basic_Statistics_fastqc_data.temp", sep="")
basic.stats <- read.table(stats.path, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
# basic.stats[ ,1:2]
print(xtable(basic.stats[ ,1:2]))
## Summary of filters - table ##
stats.path <- paste(fqc.folder, "/", "filters_summary_fastqc_data.temp", sep="")
summary.filters <- read.table(stats.path,
header = TRUE, sep = "\t", stringsAsFactors = FALSE)
# summary.filters
print(xtable(summary.filters))
## Per base sequence quality ##
stats.path <- paste(fqc.folder, "/", "Per_base_sequence_quality_fastqc_data.temp", sep="")
base.qual <- read.table(stats.path,
header = TRUE, sep = "\t", stringsAsFactors = FALSE)
base.qual$Base <- factor(base.qual$Base, as.character(base.qual$Base)) # re-order the levels by order of appearance in DF
plot.new()
base.qual.p <- ggplot(base.qual, aes(x = Base, ymin = X10th.Percentile, lower = Lower.Quartile, middle = Median, upper = Upper.Quartile, ymax = X90th.Percentile, fill = Lower.Quartile)) + geom_boxplot(stat = "identity") +
theme(axis.text.x = element_text(angle=30, hjust=1, vjust=1)) +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=0, ymax=20, alpha=0.1, fill="red") +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=20, ymax=28, alpha=0.1, fill="yellow") +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=28, ymax=Inf, alpha=0.1, fill="green") +
ggtitle("Per base sequence quality") + ylab("Quality score (Phred score) ") + xlab("Position of base in read")
print(base.qual.p)
}
@
\end{document}
Upvotes: 2