Reputation: 8848
Consider the following dataframe with 4 columns:
df = data.frame(A = rnorm(10), B = rnorm(10), C = rnorm(10), D = rnorm(10))
The columns A, B, C, D belong to different groups, and the groups are defined in a separate dataframe:
groups = data.frame(Class = c("A","B","C","D"), Group = c("G1", "G2", "G2", "G1"))
#> groups
# Class Group
#1 A G1
#2 B G2
#3 C G2
#4 D G1
I would like to average elements of the columns that belong to the same group, and get something similar to:
#> res
# G1 G2
#1 -0.30023039 -0.71075139
#2 0.53053443 -0.12397126
#3 0.21968567 -0.46916160
#4 -1.13775100 -0.61266026
#5 1.30388130 -0.28021734
#6 0.29275876 -0.03994522
#7 -0.09649998 0.59396983
#8 0.71334020 -0.29818438
#9 -0.29830924 -0.47094084
#10 -0.36102888 -0.40181739
where each cell of G1 is the mean of the relative cells of A and D, and each cell of G2 is the mean of the relative cells of B and C, etc.
I was able to achieve this result, but in a rather brute force way:
l = levels(groups$Group)
res = data.frame(matrix(nc = length(levels), nr = nrow(df)))
for(i in 1:length(l)) {
df.sub = df[which(groups$Group == l[i])]
res[,i] = apply(df.sub, 1, mean)
}
names(res) <- l
Is there a better way of doing this? In reality, I have more than 20 columns and more than 10 groups.
Thank you!
Upvotes: 2
Views: 202
Reputation: 55420
library(data.table)
groups <- data.table(groups, key="Group")
DT <- data.table(df)
groups[, rowMeans(DT[, Class, with=FALSE]), by=Group][, setnames(as.data.table(matrix(V1, ncol=length(unique(Group)))), unique(Group))]
G1 G2
1: -0.13052091 -0.3667552
2: 1.17178729 -0.5496347
3: 0.23115841 0.8317714
4: 0.45209516 -1.2180895
5: -0.01861638 -0.4174929
6: -0.43156831 0.9008427
7: -0.64026238 0.1854066
8: 0.56225108 -0.3563087
9: -2.00405840 -0.4680040
10: 0.57608055 -0.6177605
# Also, make sure you have characters, not factors,
groups[, Class := as.character(Class)]
groups[, Group := as.character(Group)]
simple base:
tapply(groups$Class, groups$Group, function(X) rowMeans(df[, X]))
using sapply
:
sapply(unique(groups$Group), function(X)
rowMeans(df[, groups[groups$Group==X, "Class"]]) )
Upvotes: 3
Reputation: 193677
I would personally go with Ricardo's solution, but another option would be to merge
your two datasets first, and then use your preferred method of aggregating.
library(reshape2)
## Retain the "rownames" so we can aggregate by row
temp <- merge(cbind(id = rownames(df), melt(df)), groups,
by.x = "variable", by.y = "Class")
head(temp)
# variable id value Group
# 1 A 1 -0.6264538 G1
# 2 A 2 0.1836433 G1
# 3 A 3 -0.8356286 G1
# 4 A 4 1.5952808 G1
# 5 A 5 0.3295078 G1
# 6 A 6 -0.8204684 G1
## This is the perfect form for `dcast` to do its work
dcast(temp, id ~ Group, value.var="value", mean)
# id G1 G2
# 1 1 0.36611287 1.21537927
# 2 10 0.22889368 0.50592144
# 3 2 0.04042780 0.58598977
# 4 3 -0.22397850 -0.27333780
# 5 4 0.77073788 -2.10202579
# 6 5 -0.52377589 0.87237833
# 7 6 -0.61773147 -0.05053117
# 8 7 0.04656955 -0.08599288
# 9 8 0.33950565 -0.26345809
# 10 9 0.83790336 0.17153557
(Above data using set.seed(1)
on your sample "df".
Upvotes: 0