Reputation: 1193
I think the Question is self sufficient. Is the syntax of C Language completely defined through Context Free Grammars or do we have Language Constructs which may require non-Context Free definitions in the course of parsing?
An example of non CFL construct i thought was the declaration of variables before their use. But in Compilers(Aho Ullman Sethi), it is stated that the C Language does not distinguish between identifiers on the basis of their names. All the identifiers are tokenized as 'id' by the Lexical Analyzer. If C is not completely defined by CFGs, please can anyone give an example of Non CFL construct in C?
Upvotes: 4
Views: 3525
Reputation: 6696
If you mean by the "syntax of C" all valid C strings that some C compiler accepts, and after running the pre-processor, but ignoring typing errors, then this is the answer: yes but not unambiguously.
First, you could assume the input program is tokenized according to the C standard. The grammar will describe relations among these tokens and not the bare characters. Such context-free grammars are found in books about C and in implementations that use parser generators. This tokenization is a big assumption because quite some work goes into "lexing" C. So, I would argue that we have not described C with a context-free grammar yet, if we have not used context-free grammars to describe the lexical level. The staging between the tokenizer and the parser combined with the ordering emposed by a scanner generator (prefer keywords, longest match, etc) are a major increase in computational power which is not easily simulated in a context-free grammar.
So, If you do not assume a tokenizer which for example can distinguish type names from variable names using a symbol table, then a context-free grammar is going to be harder. However: the trick here is to accept ambiguity. We can describe the syntax of C including its tokens in a context-free grammar fully. Only the grammar will be ambiguous and produce different interpretations for the same string . For example for A *a;
it will have derivations for a multiplication and a pointer declaration both. No problem, the grammar is still describing the C syntax as you requested, just not unambiguously.
Notice that we have assumed having run the pre-processor first as well, I believe your question was not about the code as it looks before pre-processing. Describing that using a context-free grammar would be just madness since syntactic correctness depends on the semantics of expanding user-defined macros. Basically, the programmer is extending the syntax of the C language every time a macro is defined. At CWI we did write context-free grammars for C given a set of known macro definitions to extend the C language and that worked out fine, but that is not a general solution.
Upvotes: 0
Reputation: 241931
The C
language, as defined by the language standard, includes the preprocessor. The following is a syntactically correct C program:
#define START int main(
#define MIDDLE ){
START int argc, char** argv MIDDLE return 0; }
It seems to be really tempting to answer this question (which arises a lot) "sure, there is a CFG for C", based on extracting a subset of the grammar in the standard, which grammar in itself is ambiguous and recognizes a superset of the language. That CFG is interesting and even useful, but it is not C.
In fact, the productions in the standard do not even attempt to describe what a syntactically correct source file is. They describe:
The lexical structure of the source file (along with the lexical structure of valid tokens after pre-processing).
The grammar of individual preprocessor directives
A superset of the grammar of the post-processed language, which relies on some other mechanism to distinguish between typedef-name
and other uses of identifier
, as well as a mechanism to distinguish between constant-expression
and other uses of conditional-expression
.
There are many who argue that the issues in point 3 are "semantic", rather than "syntactic". However, the nature of C (and even more so its cousin C++) is that it is impossible to disentangle "semantics" from the parsing of a program. For example, the following is a syntactically correct C program:
#define base 7
#if base * 2 < 10
&one ?= two*}}
#endif
int main(void){ return 0; }
So if you really mean "is the syntax of the C language defined by a CFG", the answer must be no. If you meant, "Is there a CFG which defines the syntax of some language which represents strings which are an intermediate product of the translation of a program in the C language," it's possible that the answer is yes, although some would argue that the necessity to make precise what is a constant-expression
and a typedef-name
make the syntax necessarily context-sensitive, in a way that other languages are not.
Upvotes: 2
Reputation: 47603
Is the syntax of C Language completely defined through Context Free Grammars?
Yes it is. This is the grammar of C in BNF:
http://www.cs.man.ac.uk/~pjj/bnf/c_syntax.bnf
If you don't see other than exactly one symbol on the left hand side of any rule, then the grammar is context free. That is the very definition of context free grammars (Wikipedia):
In formal language theory, a context-free grammar (CFG) is a formal grammar in which every production rule is of the form
V → w
where V is a single nonterminal symbol, and w is a string of terminals and/or nonterminals (w can be empty).
Since ambiguity is mentioned by others, I would like to clarify a bit. Imagine the following grammar:
A -> B x | C x
B -> y
C -> y
This is an ambiguous grammar. However, it is still a context free grammar. These two are completely separate concepts.
Obviously, the semantics analyzer of C is context sensitive. This answer from the duplicate question has further explanations.
Upvotes: 1
Reputation:
The problem is that you haven't defined "the syntax of C".
If you define it as the language C in the CS sense, meaning the set of all valid C programs, then C – as well as virtually every other language aside from turing tarpits and Lisp – is not context free. The reasons are not related to the problem of interpreting a C program (e.g. deciding whether a * b;
is a multiplication or a declaration). Instead, it's simply because context free grammars can't help you decide whether a given string is a valid C program. Even something as simple as int main() { return 0; }
needs a more powerful mechanism than context free grammars, as you have to (1) remember the return type and (2) check that whatever occurs after the return
matches the return type. a * b;
faces a similar problem – you don't need to know whether it's a multiplication, but if it is a multiplication, that must be a valid operation for the types of a
and b
. I'm not actually sure whether a context sensitive grammar is enough for all of C, as some restrictions on valid C programs are quite subtle, even if you exclude undefined behaviour (some of which may even be undecidable).
Of course, the above notion is hardly useful. Generally, when talking grammars, we're only interested in a pretty good approximation of a valid program: We want a grammar that rules out as many strings which aren't C as possible without undue complexity in the grammar (for example, 1 a
or (-)
). Everything else is left to later phases of the compiler and called a semantic error or something similar to distinguish it from the first class of errors. These "approximate" grammars are almost always context free grammars (including in C's case), so if you want to call this approximation of the set of valid programs "syntax", C is indeed defined by a context free grammar. Many people do, so you'd be in good company.
Upvotes: 3
Reputation: 28802
There are two things here:
Upvotes: 0