Reputation: 1120
That's my data:
> head(data)
id C1 C2 C3 B1 B2 B3 Name
12 3 12 8 1 3 12 Agar
14 4 11 9 5 12 14 LB
18 7 17 6 7 14 16 YEF
20 9 15 4 3 11 17 KAN
so I used a melt function from reshape2 package to reorganize my data. Now it looks like that:
dt <- melt(data, measure.vars=2:7)
> head(dt)
n v variable value rt
1 id Name p C1 1
2 12 Agar p 3 2
3 14 LB p 4 3
4 18 YEF p 7 6
5 20 KAN p 9 3
6 id Name u C2 1
I did some calculations on my data and now there is an extra column. Let's call it "rt". I'd like to transform my data now to the previous "state" with this an extra column. Do you know any function which would be useful ?
dput(dt)
structure(list(n = structure(c(5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L,
3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L,
4L, 5L, 1L, 2L, 3L, 4L), class = "factor", .Label = c("12", "14",
"18", "20", "id")), v = structure(c(4L, 1L, 3L, 5L, 2L, 4L, 1L,
3L, 5L, 2L, 4L, 1L, 3L, 5L, 2L, 4L, 1L, 3L, 5L, 2L, 4L, 1L, 3L,
5L, 2L, 4L, 1L, 3L, 5L, 2L), class = "factor", .Label = c("Agar",
"KAN", "LB", "Name", "YEF")), variable = structure(c(1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L), .Label = c("p",
"u", "k", "l", "t", "h"), class = "factor"), value = c("C1",
"3", "4", "7", "9", "C2", "12", "11", "17", "15", "C3", "8",
"9", "6", "4", "B1", "1", "5", "7", "3", "B2", "3", "12", "14",
"11", "B3", "12", "14", "16", "17")), .Names = c("n", "v", "variable",
"value"), row.names = c(NA, -30L), class = "data.frame")
Upvotes: 2
Views: 1527
Reputation: 193547
In the "reshape2" universe, melt
and *cast
go hand-in-hand.
Here's an example of melt
ing a data.frame
and dcast
ing it back to its original form. You would need to take a similar approach with your data.
mydf <- data.frame(A = LETTERS[1:3], B = 1:3, C = 4:6)
mydf
# A B C
# 1 A 1 4
# 2 B 2 5
# 3 C 3 6
library(reshape2)
mDF <- melt(mydf, id.vars="A")
mDF
dcast(mDF, A ~ variable, value.var="value")
# A B C
# 1 A 1 4
# 2 B 2 5
# 3 C 3 6
In the dcast
step, think of the items before the ~
as being the "id" variables, and those coming after as being the resulting column names. value.var
should be the column from which the values will fill in the resulting "grid" created by the id variables and column names.
Upvotes: 7