Reputation: 5056
For a personal challenge, I'm implementing LINQ in JavaScript (well, a set of functions with LINQ-like functionality). However, as of right now, the functions are processing the data immediately; that's correct behavior for some functions (such as Sum or Aggregate), but incorrect for others (such as Select or While).
I'm curious if there's a construct in JavaScript that could get me the same behavior as in .Net, where no real processing happens until the collection is enumerated or a function with immediate execution is used.
Note: I believe this task (implementing LINQ in JS) has already been done. That's not the point. This is a challenge to myself from myself, which is likely to help me increase my understanding of LINQ (and, coincidentally, JS). Beyond personal edification, I'm going to be using LINQ for my job soon, may use JS for my job depending on the needs of individual projects, and I use JS for some things outside of work.
Edit: It seems I've attracted people unfamiliar with LINQ, so I suppose I should give some explanation on that front. LINQ is Language-INtegrated Query, something from .Net. LINQ allows for SQL-like queries on many data sources (including actual SQL relational databases), such as LINQ to Objects, which is what I'm trying to achieve.
One of the features of LINQ is deferred execution on many of the methods. If I have a collection customers
and call var query = customers.Where(c => c.Age > 40);
(or what it would end up being in JS, var query = customers.Where(function (c) { return c.Age > 40; });
), the return value is an interface type, and the actual processing of the collection (returning the subset of the collection containing only customers older than 40) hasn't happened yet. When I use one of the methods without deferred execution (eg, query.First()
or query.ToArray()
), then all of the deferred processing happens. This could be a chain, such as customers.Where(...).Skip(5).Select(...).OrderBy(...)
(each "..." being a function).
The upshot is that code like this:
var collection = [1, 2, 3, 4, 5];
var query = collection.Where(function (n) { return n % 2 == 0; });
collection.push(6);
alert(query.Max());
Would result in "6".
this
, and skipping any elements which are functions. Something like making an Enumerable class may be superior (and in fact may be required for my deferred execution plan, if something like returning a function or an anonymous object is required), but that's what I've currently got. My functions generally appear as something along these lines:
Object.prototype.Distinct = Array.prototype.Distinct = function (comparer) {
comparer = comparer || function (a, b) { return a == b; };
var result = [];
for (var idx in this) {
var item = this[idx];
if (typeof item == "function") continue;
if (!result.Contains(item, comparer)) result.push(item);
}
return result;
};
Upvotes: 3
Views: 1282
Reputation: 26995
I am not entirely clear on what exactly you wish to do, but I think what you should look into is the defineProperty
method. What you would probably wish to do is then to redefine the .length
property and execute the code only once it's read. Or if you want to do it only once the property itself is read do it at that point. Not sure how LINQ works or even what it is, so that's why I am a bit vague. Either way, with defineProperty
you can do something like
Object.defineProperty(o, "a", { get : function(){return 1;});
Allowing you to do actions only once the property is accessed (and you can do a lot more than that as well).
Upvotes: 0
Reputation: 3773
Fundamentally what you need to do is return objects from your functions rather than performing operations. The objects you return will contain the code necessary to perform the operations in the future. Consider an example use case:
var myCollection = [];
for(var i = 0; i < 100; i++) { myCollection.push(i); }
var query = Iter(myCollection).Where(function(v) { return v % 2 === 0; })
.Skip(5).Select(function(v) { return v*2; });
var v;
while(v = query.Next()) {
console.log(v);
}
We expect as output:
20
24
28
...
188
192
196
In order to do that we define the methods .Where(), .Skip(), and .Select() to return instances of classes with overridden versions of the .Next() method. Working code that supports this functionality: ( set trace to true to observe that the execution order is lazy)
var trace = false;
function extend(target, src) {
for(var k in src) {
target[k] = src[k];
}
return target;
}
function Iter(wrapThis) {
if(wrapThis.Next) {
return wrapThis;
} else {
return new ArrayIter(wrapThis);
}
}
Iter.prototype = {
constructor: Iter,
Where: function(fn) { return new WhereIter(this, fn); },
Skip: function(count) { return new SkipIter(this, count); },
Select: function(fn) { return new SelectIter(this, fn); }
};
function ArrayIter(arr) {
this.arr = arr.slice();
this.idx = 0;
}
ArrayIter.prototype = extend(Object.create(Iter.prototype),
{
constructor: ArrayIter,
Next: function() {
if(this.idx >= this.arr.length) {
return null;
} else {
return this.arr[this.idx++];
}
}
});
function WhereIter(src, filter) {
this.src = src; this.filter = filter;
}
WhereIter.prototype = extend(Object.create(Iter.prototype), {
constructor: WhereIter,
Next: function() {
var v;
while(true) {
v = this.src.Next();
trace && console.log('Where processing: ' + v);
if(v === null || this.filter.call(this, v)) { break; }
}
return v;
}
});
function SkipIter(src, count) {
this.src = src; this.count = count;
this.skipped = 0;
}
SkipIter.prototype = extend(Object.create(Iter.prototype), {
constructor: SkipIter,
Next: function() {
var v;
while(this.count > this.skipped++) {
v = this.src.Next();
trace && console.log('Skip processing: ' + v);
if(v === null) { return v; }
}
return this.src.Next();
}
});
function SelectIter(src, fn) {
this.src = src; this.fn = fn;
}
SelectIter.prototype = extend(Object.create(Iter.prototype), {
constructor: SelectIter,
Next: function() {
var v = this.src.Next();
trace && console.log('Select processing: ' + v);
if(v === null) { return null; }
return this.fn.call(this, v);
}
});
var myCollection = [];
for(var i = 0; i < 100; i++) {
myCollection.push(i);
}
var query = Iter(myCollection).Where(function(v) { return v % 2 === 0; })
.Skip(5).Select(function(v) { return v*2; });
var v;
while(v = query.Next()) {
console.log(v);
}
You also may want to look into "string lambdas" to make your queries much more readable. That would allow you to say "v*2"
instead of function(v) { return v*2; }
Upvotes: 2