Reputation: 571
After a few days of optimization this is my code for an enumeration process that consist in finding the best combination for every row of W
. The algorithm separates the matrix W
in one where the elements of W
are grather of LimiteInferiore
(called W_legali
) and one that have only element below the limit (called W_nlegali
).
Using some parameters like Media
(aka Mean), rho_b_legali
The algorithm minimizes the total cost function. In the last part, I find where is the combination with the lowest value of objective function and save it in W_ottimo
As you can see the algorithm is not so "clean" and with very large matrix (142506x3000) is damn slow...So, can somebody help me to speed it up a little bit?
for i=1:3000
W = PesoIncertezza * MatriceCombinazioni';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W_legali = W;
W_legali(W<LimiteInferiore) = nan;
if i==1
Media = W_legali;
rho_b_legale = ones(size (W_legali,1),size(MatriceCombinazioni,1));
else
Media = (repmat(sum(W_tot_migl,2),1,size(MatriceCombinazioni,1))+W_legali)/(size(W_tot_migl,2)+1);
rho_b_legale = repmat(((n_b+1)/i),1,size(MatriceCombinazioni,1));
end
[W_legali_migl,comb] = min(C_u .* Media .* (1./rho_b_legale) + (1./rho_b_legale) .* c_0 + (c_1./(i * rho_b_legale)),[],2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
MatriceCombinazioni_2 = MatriceCombinazioni;
MatriceCombinazioni_2(sum(MatriceCombinazioni_2,2)<2,:)=[];
W_nlegali = PesoIncertezza * MatriceCombinazioni_2';
W_nlegali(W_nlegali>=LimiteInferiore) = nan;
if i==1
Media = W_nlegali;
rho_b_nlegale = zeros(size (W_nlegali,1),size(MatriceCombinazioni_2,1));
else
Media = (repmat(sum(W_tot_migl,2),1,size(MatriceCombinazioni_2,1))+W_nlegali)/(size(W_tot_migl,2)+1);
rho_b_nlegale = repmat(((n_b)/i),1,size(MatriceCombinazioni_2,1));
end
[W_nlegali_migliori,comb2] = min(C_u .* Media .* (1./rho_b_nlegale) + (1./rho_b_nlegale) .* c_0 + (c_1./(i * rho_b_nlegale)),[],2);
z = [W_legali_migl, W_nlegali_migliori];
[z_ott,comb3] = min(z,[],2);
%Increasing n_b
if i==1
n_b = zeros(size(W,1),1);
end
index = find(comb3==1);
increment = ones(size(index,1),1);
B = accumarray(index,increment);
nzIndex = (B ~= 0);
n_b(nzIndex) = n_b(nzIndex) + B(nzIndex);
%Using comb3 to find where is the best configuration, is in
%W_legali or in W_nLegali?
combinazione = comb.*logical(comb3==1) + comb2.*logical(comb3==2);
W_ottimo = W(sub2ind(size(W),[1:size(W,1)],combinazione'))';
W_tot_migl(:,i) = W_ottimo;
FunzObb(:,i) = z_ott;
[PesoCestelli] = Simulazione_GenerazioneNumeriCasuali (PianoSperimentale,NumeroCestelli,NumeroEsperimenti,Alfa);
[PesoIncertezza_2] = Simulazione_GenerazioneIncertezza (NumeroCestelli,NumeroEsperimenti,IncertezzaCella,PesoCestelli);
PesoIncertezza(MatriceCombinazioni(combinazione,:)~=0) = PesoIncertezza_2(MatriceCombinazioni(combinazione,:)~=0); %updating just the hoppers that has been discharged
end
Upvotes: 0
Views: 137
Reputation: 30579
When you see repmat
you should think bsxfun
. For example, replace:
Media = (repmat(sum(W_tot_migl,2),1,size(MatriceCombinazioni,1))+W_legali) / ...
(size(W_tot_migl,2)+1);
with
Media = bsxfun(@plus,sum(W_tot_migl,2),W_legali) / ...
(size(W_tot_migl,2)+1);
The purpose of bsxfun
is to do a virtual "singleton expansion" like repmat, without actually replicating the array into a matrix of the same size as W_legali
.
Also note that in the above code, sum(W_tot_migl,2)
is computed twice. There are other small optimizations, but changing to bsxfun
should give you a good improvement.
The values of 1./rho_b_legale
are effectively computed three times. Store this quotient matrix.
Upvotes: 1