Reputation: 15
The problem in the link:
can be integrated analytically and the answer is 4, however I'm interested in integrating it numerically using Matlab, because it's similar in form to a problem that I can't integrate analytically. The difficulty in the numerical integration arises because the function in the two inner integrals is a function of x
,y
and z
and z
can't be factored out.
Upvotes: 1
Views: 1438
Reputation: 8477
Well, this is strange, because on the poster's similar previous question I claimed this can't be done, and now after having looked at Guddu's answer I realize its not that complicated. What I wrote before, that a numerical integration results in a number but not a function, is true – but beside the point: One can just define a function that evaluates the integral for every given parameter, and this way effectively one does have a function as a result of a numerical integration.
Anyways, here it goes:
function q = outer
f = @(z) (z .* exp(inner(z)));
q = quad(f, eps, 2);
end
function qs = inner(zs)
% compute \int_0^1 1 / (y + z) dy for given z
qs = nan(size(zs));
for i = 1 : numel(zs)
z = zs(i);
f = @(y) (1 ./ (y + z));
qs(i) = quad(f, 0 , 1);
end
end
I applied the simplification suggested by myself in a comment, eliminating x. The function inner
calculates the value of the inner integral over y as a function of z. Then the function outer computes the outer integral over z. I avoid the pole at z = 0 by letting the integration run from eps
instead of 0. The result is
4.00000013663955
inner
has to be implemented using a for
loop because a function given to quad
needs to be able to return its value simultaneously for several argument values.
Upvotes: 0
Reputation: 2437
by no means, this is elegant. hope someone can make better use of matlab functions than me. i have tried the brute force way just to practice numerical integration. i have tried to avoid the pole in the inner integral at z=0 by exploiting the fact that it is also being multiplied by z. i get 3.9993. someone must get better solution by using something better than trapezoidal rule
function []=sofn
clear all
global x y z xx yy zz dx dy
dx=0.05;
x=0:dx:1;
dy=0.002;
dz=0.002;
y=0:dy:1;
z=0:dz:2;
xx=length(x);
yy=length(y);
zz=length(z);
s1=0;
for i=1:zz-1
s1=s1+0.5*dz*(z(i+1)*exp(inte1(z(i+1)))+z(i)*exp(inte1(z(i))));
end
s1
end
function s2=inte1(localz)
global y yy dy
if localz==0
s2=0;
else
s2=0;
for j=1:yy-1
s2=s2+0.5*dy*(inte2(y(j),localz)+inte2(y(j+1),localz));
end
end
end
function s3=inte2(localy,localz)
global x xx dx
s3=0;
for k=1:xx-1
s3=s3+0.5*dx*(2/(localy+localz));
end
end
Upvotes: 1