Josh
Josh

Reputation: 12791

Creating dataframe from a dictionary where entries have different lengths

Say I have a dictionary with 10 key-value pairs. Each entry holds a numpy array. However, the length of the array is not the same for all of them.

How can I create a dataframe where each column holds a different entry?

When I try:

import pandas as pd
import numpy as np
from string import ascii_uppercase  # from the standard library

# repeatable sample data
np.random.seed(2023)
data = {k: np.random.randn(v) for k, v in zip(ascii_uppercase[:10], range(10, 20))}

df = pd.DataFrame(data)

I get:

ValueError: arrays must all be the same length

Any way to overcome this? I am happy to have Pandas use NaN to pad those columns for the shorter entries.

Desired Result

           A         B         C         D         E         F         G         H         I         J
0   0.711674 -1.076522 -1.502178 -1.519748  0.340619  0.051132  0.036537  0.367296  1.056500 -1.186943
1  -0.324485 -0.325682 -1.379593  2.097329 -1.253501 -0.238061  2.431822 -0.576828 -0.733918 -0.540638
2  -1.001871 -1.035498 -0.204455  0.892562  0.370788 -0.208009  0.422599 -0.416005 -0.083968 -0.638495
3   0.236251 -0.426320  0.642125  1.596488  0.455254  0.401304  1.843922 -0.137542  0.127288  0.150411
4  -0.102160 -1.029361 -0.181176 -0.638762 -2.283720  0.183169 -0.221562  1.294987  0.344423  0.919450
5  -1.141293 -0.521774  0.771749 -1.133047 -0.000822  1.235830  0.337117  0.520589  0.685970  0.910146
6   2.654407 -0.422758  0.741523  0.656597  2.398876 -0.291800 -0.557180 -0.194273  0.399908  1.605234
7   1.440605 -0.099244  1.324763  0.595787 -2.583105  0.029992  0.053141 -0.385593  0.893458  0.667165
8   0.098902 -1.380258  0.439287 -0.811120  1.311009 -0.868404  1.053804 -3.065784  0.384793  0.950338
9  -3.121532  0.301903 -0.557873 -0.300535 -1.579478  0.604346 -0.658515 -0.668181  0.641113  0.734329
10       NaN -1.033599  0.927080  1.008391 -0.840683  0.728554  1.844449  0.056965 -0.577314  1.015465
11       NaN       NaN -0.600727 -1.087762 -0.165509  1.364820 -0.075514 -0.909368 -0.819947  0.627386
12       NaN       NaN       NaN -1.787079 -2.068410  1.342694  0.264263 -1.487910  0.746819  1.062655
13       NaN       NaN       NaN       NaN  0.452739 -1.456708 -1.395359  1.169611  1.836805  0.262885
14       NaN       NaN       NaN       NaN       NaN  0.969357  0.708416  0.393677 -1.455490 -2.086486
15       NaN       NaN       NaN       NaN       NaN       NaN  0.762756  0.530569 -0.828721 -1.076369
16       NaN       NaN       NaN       NaN       NaN       NaN       NaN -0.586429 -0.609144 -0.507519
17       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN -1.071297 -0.274501
18       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN  1.848811

Upvotes: 201

Views: 180375

Answers (9)

Trenton McKinney
Trenton McKinney

Reputation: 62393

Use pandas.DataFrame and pandas.concat

  • The following code uses a list-comprehension to create a list of DataFrames, with pandas.DataFrame, from a dict of uneven arrays, and then combines the DataFrames with concat.
    • axis=1 concatenates along the columns for a wide dataframe, whereas the default, axis=0, concatenates along the index for a long dataframe.
  • Use df = pd.DataFrame(date) for for a dict with equal length value arrays.
import pandas as pd

# create the dataframe
df = pd.concat([pd.DataFrame(v, columns=[k]) for k, v in data.items()], axis=1)

Use pandas.DataFrame and itertools.zip_longest

  • For iterables of uneven length, zip_longest fills missing values with the fillvalue.
  • The zip generator needs to be unpacked, because the DataFrame constructor won't unpack it.
from itertools import zip_longest

# zip all the values together
zl = list(zip_longest(*data.values()))

# create dataframe
df = pd.DataFrame(zl, columns=data.keys())

plot

ax = df.plot(marker='o', figsize=[10, 5])

enter image description here

df Result

           A         B         C         D         E         F         G         H         I         J
0   0.711674 -1.076522 -1.502178 -1.519748  0.340619  0.051132  0.036537  0.367296  1.056500 -1.186943
1  -0.324485 -0.325682 -1.379593  2.097329 -1.253501 -0.238061  2.431822 -0.576828 -0.733918 -0.540638
2  -1.001871 -1.035498 -0.204455  0.892562  0.370788 -0.208009  0.422599 -0.416005 -0.083968 -0.638495
3   0.236251 -0.426320  0.642125  1.596488  0.455254  0.401304  1.843922 -0.137542  0.127288  0.150411
4  -0.102160 -1.029361 -0.181176 -0.638762 -2.283720  0.183169 -0.221562  1.294987  0.344423  0.919450
5  -1.141293 -0.521774  0.771749 -1.133047 -0.000822  1.235830  0.337117  0.520589  0.685970  0.910146
6   2.654407 -0.422758  0.741523  0.656597  2.398876 -0.291800 -0.557180 -0.194273  0.399908  1.605234
7   1.440605 -0.099244  1.324763  0.595787 -2.583105  0.029992  0.053141 -0.385593  0.893458  0.667165
8   0.098902 -1.380258  0.439287 -0.811120  1.311009 -0.868404  1.053804 -3.065784  0.384793  0.950338
9  -3.121532  0.301903 -0.557873 -0.300535 -1.579478  0.604346 -0.658515 -0.668181  0.641113  0.734329
10       NaN -1.033599  0.927080  1.008391 -0.840683  0.728554  1.844449  0.056965 -0.577314  1.015465
11       NaN       NaN -0.600727 -1.087762 -0.165509  1.364820 -0.075514 -0.909368 -0.819947  0.627386
12       NaN       NaN       NaN -1.787079 -2.068410  1.342694  0.264263 -1.487910  0.746819  1.062655
13       NaN       NaN       NaN       NaN  0.452739 -1.456708 -1.395359  1.169611  1.836805  0.262885
14       NaN       NaN       NaN       NaN       NaN  0.969357  0.708416  0.393677 -1.455490 -2.086486
15       NaN       NaN       NaN       NaN       NaN       NaN  0.762756  0.530569 -0.828721 -1.076369
16       NaN       NaN       NaN       NaN       NaN       NaN       NaN -0.586429 -0.609144 -0.507519
17       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN -1.071297 -0.274501
18       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN  1.848811

Upvotes: 11

don-joe
don-joe

Reputation: 600

Here is a different solution that has no NaN values, but instead an additional column that gives you the source of the data:

pd.concat([pd.DataFrame({"score":v, "type":k}) for k, v in d.items()])

So for example

import pandas as pd
x1 = [2,3,4]
x2 = [5,6]
x3 = [100]
data = {'x1': x1, 'x2': x2, 'x3': x3}
pd.concat([pd.DataFrame({"score":v, "type":k}) for k, v in data.items()])

gives this dataframe:

     score type
0      2   x1
1      3   x1
2      4   x1
0      5   x2
1      6   x2
2      7   x2
0    100   x3

Upvotes: 0

Jeff
Jeff

Reputation: 128948

In Python 3.x:

import pandas as pd
import numpy as np

d = dict( A = np.array([1,2]), B = np.array([1,2,3,4]) )
    
pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in d.items() ]))

Out[7]: 
    A  B
0   1  1
1   2  2
2 NaN  3
3 NaN  4

In Python 2.x:

replace d.items() with d.iteritems().

Upvotes: 231

JoseOrtiz3
JoseOrtiz3

Reputation: 1883

A way of tidying up your syntax, but still do essentially the same thing as these other answers, is below:

>>> mydict = {'one': [1,2,3], 2: [4,5,6,7], 3: 8}

>>> dict_df = pd.DataFrame({ key:pd.Series(value) for key, value in mydict.items() })

>>> dict_df

   one  2    3
0  1.0  4  8.0
1  2.0  5  NaN
2  3.0  6  NaN
3  NaN  7  NaN

A similar syntax exists for lists, too:

>>> mylist = [ [1,2,3], [4,5], 6 ]

>>> list_df = pd.DataFrame([ pd.Series(value) for value in mylist ])

>>> list_df

     0    1    2
0  1.0  2.0  3.0
1  4.0  5.0  NaN
2  6.0  NaN  NaN

Another syntax for lists is:

>>> mylist = [ [1,2,3], [4,5], 6 ]

>>> list_df = pd.DataFrame({ i:pd.Series(value) for i, value in enumerate(mylist) })

>>> list_df

   0    1    2
0  1  4.0  6.0
1  2  5.0  NaN
2  3  NaN  NaN

You may additionally have to transpose the result and/or change the column data types (float, integer, etc).

Upvotes: 29

Rohan Chandratre
Rohan Chandratre

Reputation: 51

If you don't want it to show NaN and you have two particular lengths, adding a 'space' in each remaining cell would also work.

import pandas

long = [6, 4, 7, 3]
short = [5, 6]

for n in range(len(long) - len(short)):
    short.append(' ')

df = pd.DataFrame({'A':long, 'B':short}]
# Make sure Excel file exists in the working directory
datatoexcel = pd.ExcelWriter('example1.xlsx',engine = 'xlsxwriter')
df.to_excel(datatoexcel,sheet_name = 'Sheet1')
datatoexcel.save()

   A  B
0  6  5
1  4  6
2  7   
3  3   

If you have more than 2 lengths of entries, it is advisable to make a function which uses a similar method.

Upvotes: 0

Ismail Hachimi
Ismail Hachimi

Reputation: 751

Both the following lines work perfectly :

pd.DataFrame.from_dict(df, orient='index').transpose() #A

pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in df.items() ])) #B (Better)

But with %timeit on Jupyter, I've got a ratio of 4x speed for B vs A, which is quite impressive especially when working with a huge data set (mainly with a big number of columns/features).

Upvotes: 3

jpp
jpp

Reputation: 164643

You can also use pd.concat along axis=1 with a list of pd.Series objects:

import pandas as pd, numpy as np

d = {'A': np.array([1,2]), 'B': np.array([1,2,3,4])}

res = pd.concat([pd.Series(v, name=k) for k, v in d.items()], axis=1)

print(res)

     A  B
0  1.0  1
1  2.0  2
2  NaN  3
3  NaN  4

Upvotes: 3

user2015487
user2015487

Reputation: 2185

While this does not directly answer the OP's question. I found this to be an excellent solution for my case when I had unequal arrays and I'd like to share:

from pandas documentation

In [31]: d = {'one' : Series([1., 2., 3.], index=['a', 'b', 'c']),
   ....:      'two' : Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
   ....: 

In [32]: df = DataFrame(d)

In [33]: df
Out[33]: 
   one  two
a    1    1
b    2    2
c    3    3
d  NaN    4

Upvotes: 6

dezzan
dezzan

Reputation: 1201

Here's a simple way to do that:

In[20]: my_dict = dict( A = np.array([1,2]), B = np.array([1,2,3,4]) )
In[21]: df = pd.DataFrame.from_dict(my_dict, orient='index')
In[22]: df
Out[22]: 
   0  1   2   3
A  1  2 NaN NaN
B  1  2   3   4
In[23]: df.transpose()
Out[23]: 
    A  B
0   1  1
1   2  2
2 NaN  3
3 NaN  4

Upvotes: 120

Related Questions