Reputation: 7878
It's a famous example that in javascript console logging 0.1 + 0.2 yields
0.1 + 0.2 = 0.30000000000000004
The typical explanation for this is that it happens because of the way javascript represents numbers. I have 2 questions on that :
1)Why does javascript decide how to represent numbers - isn't it the "environment" (whatever it is compiling the code , be it the browser or something else?) job to decide how it wants to represent numbers?
2)Why is it impossible to fix this behavior to match most programming languages(java , c++ etc) . I mean - if this behavior isn't really good (and most would agree it isn't) , why is it impossible to fix . (Douglas Crockford showed other javascript flaws , for example weird behavior with 'this' , and it's been that way for 20 years .) . What is preventing javascript to fix these mistakes?
Upvotes: 0
Views: 688
Reputation: 1074208
Why does javascript decide how to represent numbers - isn't it the "environment"
That would be chaos. By having JavaScript define the behavior of its fundamental types, we can rely on them behaving in that way across environments.
Okay, "chaos" is rather strong. I believe C never defined what float
and double
actually were other than some range limits, and it would be fair to say that C was and arguably is wildly successful, "chaos" and all. Still, the modern trend is to nail things down a bit more.
Why is it impossible to fix this behavior to match most programming languages(java , c++ etc)
This is the behavior of most modern programming languages. Most modern programming languages use IEEE-754 single- (often "float
") and double- (often "double
") precision floating point numbers:
JavaScript: http://www.ecma-international.org/ecma-262/5.1/#sec-4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value
Java: http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.2.3
The floating-point types are
float
anddouble
, which are conceptually associated with the single-precision 32-bit and double-precision 64-bit format IEEE 754 values and operations as specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).
C#: http://msdn.microsoft.com/en-us/library/aa691146(v=vs.71).aspx
C# supports two floating point types:
float
anddouble
. Thefloat
anddouble
types are represented using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats
Upvotes: 2