Reputation: 862
Can I assume that a C/C++ struct pointer will always point to the first member?
Example 1:
typedef struct {
unsigned char array_a[2];
unsigned char array_b[5];
}test;
//..
test var;
//..
In the above example will &var always point to array_a?
Also in the above example is it possible to cast the pointer
to an unsigned char pointer and access each byte separately?
Example 2:
function((unsigned char *)&var,sizeof(test));
//...
//...
void function(unsigned char *array, int len){
int i;
for( i=0; i<len; i++){
array[i]++;
}
}
Will that work correctly?
Note: I know that chars are byte aligned in a struct therefore I assume the size of the above struct is 7 bytes.
Upvotes: 2
Views: 1509
Reputation: 16834
For C structs, yes, you can rely on it. This is how almost all "object orientated"-style APIs work in C (such as GObject and GTK).
For C++, you can rely on it only for "plain old data" (POD) types, which are guaranteed to be laid out in memory the same way as C structs. Exactly what constitutes a POD type is a little complicated and has changed between C++03 and C++11, but the crux of it is that if your type has any virtual functions then it's not a POD.
(In C++11 you can use std::is_pod
to test at compile-time whether a struct is a POD type.)
EDIT: This tells you what constitutes a POD type in C++: http://en.cppreference.com/w/cpp/concept/PODType
EDIT2: Actually, in C++11, it doesn't need to be a POD, just "standard layout", which is a lightly weaker condition. Quoth section 9.2 [class.mem] paragraph 20 of the standard:
A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [ Note: There might therefore be unnamed padding within a standard-layout struct object, but not at its beginning, as necessary to achieve appropriate alignment. — end note ]
Upvotes: 10
Reputation: 1834
From the C99 standard section 6.7.2.1 bullet point 13:
Within a structure object, the non-bit-field members and the units in which bit-fields reside have addresses that increase in the order in which they are declared. A pointer to a structure object, suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in which it resides), and vice versa. There may be unnamed padding within a structure object, but not at its beginning.
The answer to your question is therefore yes.
Reference (see page 103)
Upvotes: 7
Reputation: 3489
For C, it's largely implementation-specific, but in practice the rule (in the absence of #pragma pack or something likewise) is:
So given a struct like
struct test{
char ch;
int i;
}
will have ch at offset 0, then a padding byte to align, i at offset 2 and then at the end, padding bytes are added to make the struct size a multiple of 8 bytes.(on a 64-bit machine, 4 byte alignment may be permitted in 32 bit machines)
So at least in this case, for C, I think you can assume that the struct pointer will point to the first array.
Upvotes: 0
Reputation: 22094
The compiler is free to add padding and reorganize the struct how it sees fit. Especially in C++ you can add (virtual) functions and then chances are that the virtual table is hidden before that. But of course that are implementation details. For C this assumption is valid.
Upvotes: 0