kame
kame

Reputation: 21990

How do I print the full NumPy array, without truncation?

When I print a numpy array, I get a truncated representation, but I want the full array.

>>> numpy.arange(10000)
array([   0,    1,    2, ..., 9997, 9998, 9999])

>>> numpy.arange(10000).reshape(250,40)
array([[   0,    1,    2, ...,   37,   38,   39],
       [  40,   41,   42, ...,   77,   78,   79],
       [  80,   81,   82, ...,  117,  118,  119],
       ..., 
       [9880, 9881, 9882, ..., 9917, 9918, 9919],
       [9920, 9921, 9922, ..., 9957, 9958, 9959],
       [9960, 9961, 9962, ..., 9997, 9998, 9999]])

Upvotes: 914

Views: 1246606

Answers (23)

Adam
Adam

Reputation: 17389

matrepr will print the entire array with disabled max_rows and max_cols limits:

from matrepr import mprint

a = numpy.arange(10000).reshape(250,40)

mprint(a, max_rows=None, max_cols=None)

First few lines of the result:

<250×40, 10000 'int64' elements, array>
       0     1     2     3     4     5     6     7     8     9     10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39
    ┌                                                                                                                                                                                                                                                ┐
  0 │  0     1     2     3     4     5     6     7     8     9     10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39  │
  1 │  40    41    42    43    44    45    46    47    48    49    50    51    52    53    54    55    56    57    58    59    60    61    62    63    64    65    66    67    68    69    70    71    72    73    74    75    76    77    78    79  │
  2 │  80    81    82    83    84    85    86    87    88    89    90    91    92    93    94    95    96    97    98    99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  │
  3 │ 120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  │
  4 │ 160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199  │
  5 │ 200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239  │
  6 │ 240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279  │
  7 │ 280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319  │
  8 │ 320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359  │
  9 │ 360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399  │
 10 │ 400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439  │
 11 │ 440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   473   474   475   476   477   478   479  │

Upvotes: 4

Reed Copsey
Reed Copsey

Reputation: 564771

This sounds like you're using numpy.

If that's the case, you can add:

import numpy as np
import sys
np.set_printoptions(threshold=sys.maxsize)

That will disable the corner printing. For more information, see this NumPy Tutorial.

Upvotes: 50

gerrit
gerrit

Reputation: 26535

Temporary setting

You can use the printoptions context manager:

with numpy.printoptions(threshold=numpy.inf):
    print(arr)

(of course, replace numpy by np if that's how you imported numpy)

The use of a context manager (the with-block) ensures that after the context manager is finished, the print options will revert to whatever they were before the block started. It ensures the setting is temporary, and only applied to code within the block.

See numpy.printoptions documentation for details on the context manager and what other arguments it supports. It was introduced in NumPy 1.15 (released 2018-07-23).

Upvotes: 266

Arshdeep Singh
Arshdeep Singh

Reputation: 527

If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints the corners: To disable this behaviour and force NumPy to print the entire array, you can change the printing options using set_printoptions.

>>> np.set_printoptions(threshold='nan')

or

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

You can also refer to the numpy documentation numpy documentation for "or part" for more help.

Upvotes: 1

Michel G
Michel G

Reputation: 135

This is the hackiest solution it even prints it nicely as numpy does:

import numpy as np

a = np.arange(10000).reshape(250,40)

b = [str(row) for row in a.tolist()]

print('\n'.join(b))

Out:

output in terminal

Upvotes: 3

Raja Selvaraj
Raja Selvaraj

Reputation: 7218

Use numpy.set_printoptions:

import sys
import numpy
numpy.set_printoptions(threshold=sys.maxsize)

Upvotes: 997

mustafa candan
mustafa candan

Reputation: 846

with np.printoptions(edgeitems=50):
    print(x)

Change 50 to how many lines you wanna see

Source: here

Upvotes: 13

Negative Correlation
Negative Correlation

Reputation: 983

If you're using a jupyter notebook, I found this to be the simplest solution for one off cases. Basically convert the numpy array to a list and then to a string and then print. This has the benefit of keeping the comma separators in the array, whereas using numpyp.printoptions(threshold=np.inf) does not:

import numpy as np
print(str(np.arange(10000).reshape(250,40).tolist()))

Upvotes: 3

Jason
Jason

Reputation: 366

If you are using Jupyter, try the variable inspector extension. You can click each variable to see the entire array.

Upvotes: 2

Ben
Ben

Reputation: 61

If you have pandas available,

    numpy.arange(10000).reshape(250,40)
    print(pandas.DataFrame(a).to_string(header=False, index=False))

avoids the side effect of requiring a reset of numpy.set_printoptions(threshold=sys.maxsize) and you don't get the numpy.array and brackets. I find this convenient for dumping a wide array into a log file

Upvotes: 0

Gayal Kuruppu
Gayal Kuruppu

Reputation: 1391

A slight modification: (since you are going to print a huge list)

import numpy as np
np.set_printoptions(threshold=np.inf, linewidth=200)

x = np.arange(1000)
print(x)

This will increase the number of characters per line (default linewidth of 75). Use any value you like for the linewidth which suits your coding environment. This will save you from having to go through huge number of output lines by adding more characters per line.

Upvotes: 16

ZSG
ZSG

Reputation: 1379

Here is a one-off way to do this, which is useful if you don't want to change your default settings:

def fullprint(*args, **kwargs):
  from pprint import pprint
  import numpy
  opt = numpy.get_printoptions()
  numpy.set_printoptions(threshold=numpy.inf)
  pprint(*args, **kwargs)
  numpy.set_printoptions(**opt)

Upvotes: 53

t-bltg
t-bltg

Reputation: 904

Using a context manager as Paul Price sugggested

import numpy as np


class fullprint:
    'context manager for printing full numpy arrays'

    def __init__(self, **kwargs):
        kwargs.setdefault('threshold', np.inf)
        self.opt = kwargs

    def __enter__(self):
        self._opt = np.get_printoptions()
        np.set_printoptions(**self.opt)

    def __exit__(self, type, value, traceback):
        np.set_printoptions(**self._opt)


if __name__ == '__main__': 
    a = np.arange(1001)

    with fullprint():
        print(a)

    print(a)

    with fullprint(threshold=None, edgeitems=10):
        print(a)

Upvotes: 38

ewalel
ewalel

Reputation: 2096

To turn it off and return to the normal mode

np.set_printoptions(threshold=False)

Upvotes: 7

numpy.savetxt

numpy.savetxt(sys.stdout, numpy.arange(10000))

or if you need a string:

import StringIO
sio = StringIO.StringIO()
numpy.savetxt(sio, numpy.arange(10000))
s = sio.getvalue()
print s

The default output format is:

0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
...

and it can be configured with further arguments.

Note in particular how this also not shows the square brackets, and allows for a lot of customization, as mentioned at: How to print a Numpy array without brackets?

Tested on Python 2.7.12, numpy 1.11.1.

Upvotes: 17

Robin Qiu
Robin Qiu

Reputation: 5731

You won't always want all items printed, especially for large arrays.

A simple way to show more items:

In [349]: ar
Out[349]: array([1, 1, 1, ..., 0, 0, 0])

In [350]: ar[:100]
Out[350]:
array([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
       1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])

It works fine when sliced array < 1000 by default.

Upvotes: 2

Velizar VESSELINOV
Velizar VESSELINOV

Reputation: 2374

Since NumPy version 1.16, for more details see GitHub ticket 12251.

from sys import maxsize
from numpy import set_printoptions

set_printoptions(threshold=maxsize)

Upvotes: 6

Wolphyrus Imperius
Wolphyrus Imperius

Reputation: 868

Complementary to this answer from the maximum number of columns (fixed with numpy.set_printoptions(threshold=numpy.nan)), there is also a limit of characters to be displayed. In some environments like when calling python from bash (rather than the interactive session), this can be fixed by setting the parameter linewidth as following.

import numpy as np
np.set_printoptions(linewidth=2000)    # default = 75
Mat = np.arange(20000,20150).reshape(2,75)    # 150 elements (75 columns)
print(Mat)

In this case, your window should limit the number of characters to wrap the line.

For those out there using sublime text and wanting to see results within the output window, you should add the build option "word_wrap": false to the sublime-build file [source] .

Upvotes: 7

Szymon Zmilczak
Szymon Zmilczak

Reputation: 383

You can use the array2string function - docs.

a = numpy.arange(10000).reshape(250,40)
print(numpy.array2string(a, threshold=numpy.nan, max_line_width=numpy.nan))
# [Big output]

Upvotes: 2

ashman
ashman

Reputation: 154

Suppose you have a numpy array

 arr = numpy.arange(10000).reshape(250,40)

If you want to print the full array in a one-off way (without toggling np.set_printoptions), but want something simpler (less code) than the context manager, just do

for row in arr:
     print row 

Upvotes: 3

MSeifert
MSeifert

Reputation: 152775

This is a slight modification (removed the option to pass additional arguments to set_printoptions)of neoks answer.

It shows how you can use contextlib.contextmanager to easily create such a contextmanager with fewer lines of code:

import numpy as np
from contextlib import contextmanager

@contextmanager
def show_complete_array():
    oldoptions = np.get_printoptions()
    np.set_printoptions(threshold=np.inf)
    try:
        yield
    finally:
        np.set_printoptions(**oldoptions)

In your code it can be used like this:

a = np.arange(1001)

print(a)      # shows the truncated array

with show_complete_array():
    print(a)  # shows the complete array

print(a)      # shows the truncated array (again)

Upvotes: 13

Anoyz
Anoyz

Reputation: 7701

The previous answers are the correct ones, but as a weaker alternative you can transform into a list:

>>> numpy.arange(100).reshape(25,4).tolist()

[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21,
22, 23], [24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35], [36, 37, 38, 39], [40, 41,
42, 43], [44, 45, 46, 47], [48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61,
62, 63], [64, 65, 66, 67], [68, 69, 70, 71], [72, 73, 74, 75], [76, 77, 78, 79], [80, 81,
82, 83], [84, 85, 86, 87], [88, 89, 90, 91], [92, 93, 94, 95], [96, 97, 98, 99]]

Upvotes: 180

PaulMag
PaulMag

Reputation: 4158

import numpy as np
np.set_printoptions(threshold=np.inf)

I suggest using np.inf instead of np.nan which is suggested by others. They both work for your purpose, but by setting the threshold to "infinity" it is obvious to everybody reading your code what you mean. Having a threshold of "not a number" seems a little vague to me.

Upvotes: 324

Related Questions