Reputation: 5504
Let's say we have a list of integers: 1, 2, 5, 13, 6, 5, 7
and I want to find the first number that repeats and return a vector of the two indices. In my sample, it's 5 at [2, 5]
. What I did so far is loop
, but can I do it more elegant, short way?
(defn get-cycle
[xs]
(loop [[x & xs_rest] xs, indices {}, i 0]
(if (nil? x)
[0 i] ; Sequence is over before we found a duplicate.
(if-let [x_index (indices x)]
[x_index i]
(recur xs_rest (assoc indices x i) (inc i))))))
No need to return number itself, because I can get it by index and, second, it may be not always there.
Upvotes: 2
Views: 1078
Reputation: 9266
I know that you have only asked for the first. Here is a fully lazy implementation with little per-step allocation overhead
(defn dups
[coll]
(letfn [(loop-fn [idx [elem & rest] cached]
(if elem
(if-let [last-idx (cached elem)]
(cons [last-idx idx]
(lazy-seq (loop-fn (inc idx) rest (dissoc cached elem))))
(lazy-seq (loop-fn (inc idx) rest (assoc cached elem idx))))))]
(loop-fn 0 coll {})))
(first (dups v))
=> [2 5]
Edit: Here are some criterium benchmarks:
The answer that got accepted: 7.819269 µs
This answer (first (dups [12 5 13 6 5 7]))
: 6.176290 µs
Beschastnys: 5.841101 µs
first-duplicate: 5.025445 µs
Upvotes: 1
Reputation: 345
Here is a version using reduced to stop consuming the sequence when you find the first duplicate:
(defn first-duplicate [coll]
(reduce (fn [acc [idx x]]
(if-let [v (get acc x)]
(reduced (conj v idx))
(assoc acc x [idx])))
{} (map-indexed #(vector % %2) coll)))
Upvotes: 4
Reputation: 2600
The intent of your code seems different from your description in the comments so I'm not totally confident I understand. That said, loop
/recur
is definitely a valid way to approach the problem.
Here's what I came up with:
(defn get-cycle [xs]
(loop [xs xs index 0]
(when-let [[x & more] (seq xs)]
(when-let [[y] (seq more)]
(if (= x y)
{x [index (inc index)]}
(recur more (inc index)))))))
This will return a map of the repeated item to a vector of the two indices the item was found at.
(get-cycle [1 1 2 1 2 4 2 1 4 5 6 7])
;=> {1 [0 1]}
(get-cycle [1 2 1 2 4 2 1 4 5 6 7 7])
;=> {7 [10 11]}
(get-cycle [1 2 1 2 4 2 1 4 5 6 7 8])
;=> nil
Here's an alternative solution using sequence functions. I like this way better but whether it's shorter or more elegant is probably subjective.
(defn pairwise [coll]
(map vector coll (rest coll)))
(defn find-first [pred xs]
(first (filter pred xs)))
(defn get-cycle [xs]
(find-first #(apply = (val (first %)))
(map-indexed hash-map (pairwise xs))))
Ah, got it. Is this what you have in mind?
(defn get-cycle [xs]
(loop [xs (map-indexed vector xs)]
(when-let [[[i n] & more] (seq xs)]
(if-let [[j _] (find-first #(= n (second %)) more)]
{n [i j]}
(recur more)))))
I re-used find-first
from my earlier sequence-based solution.
Upvotes: 0
Reputation: 51470
Actually, loop
is a pretty good choice unless you want to find all duplicates. Things like reduce
will cause the full scan of an input sequence even when it's not necessary.
Here is my version of get-cycle
:
(defn get-cycle [coll]
(loop [i 0 seen {} coll coll]
(when-let [[x & xs] (seq coll)]
(if-let [j (seen x)]
[j i]
(recur (inc i) (assoc seen x i) xs)))))
The only difference from your get-cycle
is that my version returns nil
when there is no duplicates.
Upvotes: 0
Reputation: 1295
An option using list processing, but not significantly more concise:
(defn get-cycle [xs]
(first (filter #(number? (first %))
(reductions
(fn [[m i] x] (if-let [xat (m x)] [xat i] [(assoc m x i) (inc i)]))
[(hash-map) 0] xs))))
Upvotes: 6