Reputation: 35
Is there a way to extract a partial default specialization from the compiler?
Say that I have this two parameter template:
template<typename A, typename B>
struct X {
A a;
B b;
};
and I also have some code that makes use of a single parameter template, like this:
template<template<typename> class T, typename B>
struct make_T_of_B {
T<B> member;
};
I'd like to be able to say:
make_T_of_B<X<int>, double> dummy;
where X<int> is taken as a single parameter template. It would be equivalent to this template:
template<typename B>
struct Y {
int a;
B b;
};
which looks like how one would specialize X<int, B> without actually changing anything. It's in a way similar to a default specialization -- except that a default specialization doesn't produce another template but rather an actual type (in other words, it's always total).
I realize that I can cascade the template arguments
template<typename A>
struct Z1 {
// start from scratch
template<typename B>
struct Z2 {
A a;
B b;
};
// inherit from double template above
template<typename B>
struct X: ::X<A, B> {};
};
make_T_of_B<Z1<int>::Z2, double> dummy1;
make_T_of_B<Z1<int>::X, double> dummy2;
but I find that to be rather hard to read and not communicate my intentions clearly.
Thank you.
Upvotes: 0
Views: 129
Reputation: 477010
I misunderstood your question. All you want is a way to bind the first template parameter, which you can do easily like this:
template <typename T> using Foo = X<int, T>;
Now Foo<double>
is the same as X<int, double>
.
Without C++11-style aliases, you can achieve the same with a bit more boilerplate:
template <typename T> struct Foo
{
typedef X<int, T> type;
};
Now you use Foo<double>::type
.
Upvotes: 2
Reputation: 477010
I'd use a trait:
template <typename> struct applicator;
template <template <typename> class Tmpl, typename T>
struct applicator<Tmpl<T>>
{
template <typename A>
using rebind = make_T_of_B<Tmpl, A>;
};
Now you can say:
applicator<X<int>>::rebind<double> dummy;
You can of course also move the second argument, A
, into the main template:
template <typename, typename> bpplicator;
template <template <typename> class Tmpl, typename T, typename A>
struct bpplicator<Tmpl<T>, A>
{
using type = make_T_of_B<Tmpl, A>; // or "typedef make_T_of_B<Tmpl, A> type;"
};
bpplicator<X<int>, double>::type dummy;
This has the advantage that it works in C++03, too.
Upvotes: 0