Reputation: 717
My problem is as follows:
I have a data set containing several factor variables, which have the same categories. I need to find the category, which occurs most frequently for each row. In case of ties an arbitrary value can be chosen, although it would be great if I can have more control over it.
My data set contains over a hundred factors. However, the structure is something like that:
df = data.frame(id = 1:3
var1 = c("red","yellow","green")
var2 = c("red","yellow","green")
var3 = c("yellow","orange","green")
var4 = c("orange","green","yellow"))
df
# id var1 var2 var3 var4
# 1 1 red red yellow orange
# 2 2 yellow yellow orange green
# 3 3 green green green yellow
The solution should be a variable within the data frame, for example var5, which contains the most frequent category for each row. It can be a factor or a numeric vector (in case the data need to be converted first to numeric vectors)
In this case, I would like to have this solution:
df$var5
# [1] "red" "yellow" "green"
Any advice will be much appreciated! Thanks in advance!
Upvotes: 24
Views: 20091
Reputation: 83225
For an internal package I've made a rowMode
-function in which you can choose what to do with ties and missing values:
rowMode <- function(x, ties = NULL, include.na = FALSE) {
# input checks data
if ( !(is.matrix(x) | is.data.frame(x)) ) {
stop("Your data is not a matrix or a data.frame.")
}
# input checks ties method
if ( !is.null(ties) && !(ties %in% c("random", "first", "last")) ) {
stop("Your ties method is not one of 'random', 'first' or 'last'.")
}
# set ties method to 'random' if not specified
if ( is.null(ties) ) ties <- "random"
# create row frequency table
rft <- table(c(row(x)), unlist(x), useNA = c("no","ifany")[1L + include.na])
# get the mode for each row
colnames(rft)[max.col(rft, ties.method = ties)]
}
Several possible outputs (based on the different parameter options):
> rowMode(DF[,-1]) [1] "B" "E" "B" "E" "B" "C" "B" "E" "A" "E" > rowMode(DF[,-1], ties = "first") [1] "B" "B" "B" "A" "B" "C" "B" "E" "A" "E" > rowMode(DF[,-1], ties = "first", include.na = TRUE) [1] "B" NA "B" NA "B" "C" "B" "E" "A" "E" > rowMode(DF[,-1], ties = "last", include.na = TRUE) [1] "B" NA NA NA "B" "C" "B" "E" "D" "E" > rowMode(DF[,-1], ties = "last") [1] "B" "C" "B" "E" "B" "C" "B" "E" "D" "E"
Used data:
set.seed(2020)
DF <- data.frame(id = 1:10, matrix(sample(c(LETTERS[1:5], NA_character_), 60, TRUE), ncol = 6))
Upvotes: 1
Reputation: 25225
Here is another base R option:
tab <- table(data.frame(as.vector(row(df[,-1L])), unlist(df[,-1L])))
colnames(tab)[max.col(tab, "first")]
Or another data.table
approach:
melt(as.data.table(df), id.vars="id")[
order(id, value), ri := rowid(rleid(value))][,
value[which.max(ri)], id]$V1
timing code:
library(data.table)
set.seed(0L)
nr <- 1e5L
nc <- 4L
DF <- data.frame(id=1L:nr, as.data.frame(matrix(sample(letters, nr*nc, TRUE), ncol=nc)))
DT <- as.data.table(DF)
mtd0 <- function(df) apply(df,1,function(x) names(which.max(table(x))))
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
mtd_dt <- function(dt) melt(dt, id.vars="id")[, Mode(value), id]$V1
mtd_dt2 <- function(dt) melt(dt, id.vars="id")[
order(id, value), ri := rowid(rleid(value))][,
value[which.max(ri)], id]$V1
mtd2 <- function(df) {
tab <- table(data.frame(as.vector(row(df[,-1L])), unlist(df[,-1L])))
colnames(tab)[max.col(tab, "first")]
}
df = data.frame(id = 1:3,
var1 = c("red","yellow","green"),
var2 = c("red","yellow","green"),
var3 = c("yellow","orange","green"),
var4 = c("orange","green","yellow"))
a0 <- mtd0(df)
identical(a0, mtd_dt(as.data.table(df)))
#[1] TRUE
identical(a0, mtd2(df))
#[1] TRUE
identical(a0, mtd_dt2(as.data.table(df)))
#[1] TRUE
microbenchmark::microbenchmark(times=1L, mtd0(DF), mtd_dt(DT), mtd_dt2(DT), mtd2(DF))
timings:
Unit: milliseconds
expr min lq mean median uq max neval
mtd0(DF) 10083.9941 10083.9941 10083.9941 10083.9941 10083.9941 10083.9941 1
mtd_dt(DT) 1056.2319 1056.2319 1056.2319 1056.2319 1056.2319 1056.2319 1
mtd_dt2(DT) 168.6183 168.6183 168.6183 168.6183 168.6183 168.6183 1
mtd2(DF) 519.2030 519.2030 519.2030 519.2030 519.2030 519.2030 1
Upvotes: 0
Reputation: 3236
If your data is quite big you might want to consider using the data.table
package.
# Generate the data
nrow <- 10^5
id <- 1:nrow
colors <- c("red","yellow","green")
var1 <- sample(colors, nrow, replace = TRUE)
var2 <- sample(colors, nrow, replace = TRUE)
var3 <- sample(colors, nrow, replace = TRUE)
var4 <- sample(colors, nrow, replace = TRUE)
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
Chargaff's solution is simple and works well in some cases. You can gain a small performance improvement (~20%) using data.table
.
df <- data.frame(cbind(id, var1, var2, var3, var4))
system.time(apply(df, 1, Mode))
# user system elapsed
# 1.242 0.018 1.264
library(data.table)
dt <- data.table(cbind(id, var1, var2, var3, var4))
system.time(melt(dt, measure = patterns('var'))[, Mode(value1), by = id])
# user system elapsed
# 1.020 0.012 1.034
Upvotes: 3
Reputation: 1572
Something like :
apply(df,1,function(x) names(which.max(table(x))))
[1] "red" "yellow" "green"
In case there is a tie, which.max takes the first max value. From the which.max help page :
Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.
Ex :
var4 <- c("yellow","green","yellow")
df <- data.frame(cbind(id, var1, var2, var3, var4))
> df
id var1 var2 var3 var4
1 1 red red yellow yellow
2 2 yellow yellow orange green
3 3 green green green yellow
apply(df,1,function(x) names(which.max(table(x))))
[1] "red" "yellow" "green"
Upvotes: 28