Reputation: 8118
I'm wondering if there exists a way to plot a histogram and an ogive using matplotlib in Python.
I have the following for plotting a histogram
a = np.array(values)
plt.hist(a, 32, normed=0, facecolor='blue', alpha = 0.25)
plt.show()
But I don't know if matplotlib has got a good way to plot an ogive.
Here's what I'm doing:
a = np.array(values)
bins = np.arange(int(min), int(max) + 2)
histogram = np.histogram(a, bins = bins, normed = True)
v = []
s = 0.0
for e in histogram[0]:
s = s + e
v.append(s)
v[0] = histogram[0][0]
plt.plot(v)
plt.show()
Upvotes: 2
Views: 2863
Reputation: 284750
By ogive
do you just mean a cumulative histogram? If so, just pass cumulative=True
to plt.hist
.
For example:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.normal(0, 1, 1000)
fig, (ax1, ax2) = plt.subplots(nrows=2)
ax1.hist(data)
ax2.hist(data, cumulative=True)
plt.show()
If you want it to be drawn as a line, just use numpy.histogram
directly (that's what plt.hist
is using). Alternately, you can use the values that plt.hist
returns. counts
and bins
are what np.histogram
would return; plt.hist
just returns the plotted patches as well.
For example:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.normal(0, 1, 1000)
fig, ax = plt.subplots()
counts, bins, patches = plt.hist(data)
bin_centers = np.mean(zip(bins[:-1], bins[1:]), axis=1)
ax.plot(bin_centers, counts.cumsum(), 'ro-')
plt.show()
Upvotes: 5
Reputation: 68186
The question in its current form is pretty vague. Are the x and y scale similar or different? Assuming equal x-scale, it should be pretty simple. Note that since you haven't provided any data, I haven't tested the code below
import numpy as np
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.hist(values, 32, normed=0, facecolor='blue', alpha=0.25)
ax2.plot(x_ogive, y_ogive, marker='none', linestyle='-', color='black')
ax1.set_xlabel('X-data')
ax1.set_ylabel('Counts')
ax2.set_ylabel('Ogive Surface')
fig.savefig('OgiveAndHist.png')
Upvotes: 1