Reputation: 59
I have looked at other threads here on the topic, but have no been able to use them to solve my problem.
this is the main class definition of a node in the linked list:
class node {
public:
// default constructor
node() {name = ""; prev = NULL; next = NULL;};
// default overloaded
node(string s) {name = s; prev = NULL; next = NULL;};
// item in the list
string name;
// links to prev and next node in the list
node * next, * prev;
};
the above is the node class definition, which is used in another class that generates a linked list. the linkedlist code was given to us, which we had to modify, so I know it works. I have gone through and tested the addition of new nodes in the doubly linked list to be working, and I am now working on removing nodes from this same doubly linked list.
The function to remove a node: http://pastebin.com/HAbNRM5W
^ this is the code I need help with, there is too much to retype
I was told by my instructor that the code that is the problem is the line 56, which reads:
tmp->prev = prev;
I am trying to set the link to the previous node to be the correct one. the case I am trying to work from with the similar if/else
loops is whether or not the current node is the last item in the list. if it is the last item (aka curr->next = NULL
), then don't set a link using curr->next
and stop the loop iteration.
any help / ideas / suggestons / feedback will be greatly appreciated!
void linkedList::remove(string s)
{
bool found = false;
node * curr = getTop(), * prev = NULL;
node * tmp = new node();
while(curr != NULL)
{
// match found, delete
if(curr->name == s)
{
found = true;
// found at top
if(prev == NULL)
{
node * temp = getTop();
setTop(curr->next);
getTop()->prev = NULL;
delete(temp);
} // end if
else
{
// determine if last item in the list
if (curr->next = NULL)
{
// prev node points to next node
prev->next = curr->next;
// delete the current node
delete(curr);
} // end if
// if not last item in list, proceed as normal
else
{
// prev node points to next node
prev->next = curr->next;
// set the next node to its own name
tmp = prev->next;
// set prev-link of next node to the previous node (aka node before deleted)
tmp->prev = prev;
// delete the current node
delete(curr);
} // end else
} // end else
} // end if
// not found, advance pointers
if(!found)
{
prev = curr;
curr = curr->next;
} // end if
// found, exit loop
else curr = NULL;
} // end while
if(found)
cout << "Deleted " << s << endl;
else
cout << s << " Not Found "<< endl;
} // end remove
Upvotes: 1
Views: 250
Reputation: 15870
I got lost in all your different conditionals. All you need to do is this:
void linkedList::remove(const std::string& s)
{
node* current = getTop(); // get head node
while (current != nullptr) // find the item you are trying to remove
{
if (current->name == s)
{
break; // when you find it, break out of the loop
}
}
if (current != nullptr) // if found, this will be non-null
{
if (current->prev) // if this is not the head node
{
current->prev->next = current->next;
}
else
{
// update head node
}
if (current->next) // if this is not the tail node
{
current->next->prev = current->prev;
}
else
{
// update tail node
}
// at this point, current is completely disconnected from the list
delete current;
}
}
Upvotes: 0
Reputation: 44
For your code, I suggest several things. Isolate the code to find the node with the name you are looking for. The remove method SHOULD only remove a doubly linked node, provided that it is given one.
I know that your remove method takes in a string parameter, but pass that to another function and have that function return the node you are looking for.
It should look something like this:
Node *cur = find("abcd");
Node *prev = cur->prev;
prev->next = cur->next;
Node *n = cur->next;
n->next = cur->prev;
cur->next = NULL; //or nullptr
cur->prev = NULL; //or nullptr
delete cur;
Upvotes: 1
Reputation: 2988
Should look like:
prev->next = curr->next;
prev->next->prev = prev;
delete (curr);
Upvotes: 0
Reputation: 7511
NULL
should be replaced with nullptr
if (curr->next = NULL) { ...
That is an assignment, you want:
if (curr->next == nullptr) { ...
On line 47 I think you say: if prev == nullptr and next is not nullptr , but you use
prev->next = curr->next;
Which doesn't work since prev is nullptr.
Upvotes: 2