Reputation: 992
I have data like follows:
import pandas as pd
from datetime import datetime
x = pd.Series([1, 2, 4], [datetime(2013,11,1), datetime(2013,11, 2), datetime(2013, 11, 4)])
The missing index at November 3rd corresponds to a zero value, and I want it to look like this:
y = pd.Series([1,2,0,4], pd.date_range('2013-11-01', periods = 4))
What's the best way to convert x to y? I've tried
y = pd.Series(x, pd.date_range('2013-11-1', periods = 4)).fillna(0)
This throws an index error sometimes which I can't interpret (Index length did not match values, even though index and data have the same length. Is there a better way to do this?
Upvotes: 12
Views: 14513
Reputation: 117345
You can use pandas.Series.resample()
for this:
>>> x.resample('D').fillna(0)
2013-11-01 1
2013-11-02 2
2013-11-03 0
2013-11-04 4
There's fill_method
parameter in the resample()
function, but I don't know if it's possible to use it to replace NaN
during resampling. But looks like you can use how
method to take care of it, like:
>>> x.resample('D', how=lambda x: x.mean() if len(x) > 0 else 0)
2013-11-01 1
2013-11-02 2
2013-11-03 0
2013-11-04 4
Don't know which method is preferred one. Please also take a look at @AndyHayden's answer - probably reindex()
with fill_value=0
would be most efficien way to do this, but you have to make your own tests.
Upvotes: 14
Reputation: 375445
I think I would use a resample (note if there are dupes it takes the mean by default):
In [11]: x.resample('D') # you could use how='first'
Out[11]:
2013-11-01 1
2013-11-02 2
2013-11-03 NaN
2013-11-04 4
Freq: D, dtype: float64
In [12]: x.resample('D').fillna(0)
Out[12]:
2013-11-01 1
2013-11-02 2
2013-11-03 0
2013-11-04 4
Freq: D, dtype: float64
If you prefered dupes to raise, then use reindex:
In [13]: x.reindex(pd.date_range('2013-11-1', periods=4), fill_value=0)
Out[13]:
2013-11-01 1
2013-11-02 2
2013-11-03 0
2013-11-04 4
Freq: D, dtype: float64
Upvotes: 9