Reputation: 1571
I'm trying to convert a Haskell function, which displays a boolean formula, to a SML function.
The function:
data Formula
= Atom String
| Neg Formula
| Conj Formula Formula
| Disj Formula Formula
precedence :: Formula -> Int
precedence Atom{} = 4
precedence Neg {} = 3
precedence Conj{} = 2
precedence Disj{} = 1
displayPrec :: Int -> Formula -> String
displayPrec dCntxt f = bracket unbracketed where
dHere = precedence f
recurse = displayPrec dHere
unbracketed = case f of
Atom s -> s
Neg p -> "~ " ++ recurse p
Conj p q -> recurse p ++ " & " ++ recurse q
Disj p q -> recurse p ++ " | " ++ recurse q
bracket
| dCntxt > dHere = \s -> "(" ++ s ++ ")"
| otherwise = id
display :: Formula -> String
display = displayPrec 0
I' ve come so far as translating it to SML:
fun precedence(operator) =
case operator of
Atom a => 4
| Neg p => 3
| Conj(p,q) => 2
| Disj(p,q) => 1
fun displayPrec dCntxt f =
let
val dHere = precedence f
val recurse = displayPrec dHere
val unbracketed = case f of
Atom a => a
| Neg p => "~ " ^ recurse p
| Conj(p,q)=>(recurse p) ^ " & " ^ (recurse q)
| Disj(p,q)=>(recurse p) ^ " | " ^ (recurse q)
(* missing bracket function *)
in
(* bracket *) unbracketed
end
The unbracketed function works. It shows the formula without braces. The only thing that is still missing is the bracket function, which I don't know what it does and how to translate it to SML. Can someone, who is more experienced, help me with this?
Upvotes: 4
Views: 379
Reputation: 19637
That would be
val bracket =
if dCntxt > dHere
then fn s => "(" ^ s ^ ")"
else fn x => x
The function compares the precedence level of your context against the precedence level of the outer operator of your expression and decides to either insert a pair of parentheses around the given string or not.
Upvotes: 5