Reputation: 7600
Using example doc
{ "_id": {
"$oid": "527339384bb8d32905f000853"
}, "format": "flat1", "aggregation": "raw", "vm_id": "10101010", "hostname": "foo.example.com", "fooid": "100822", "ts": {
"$date": "2013-11-01T05:00:23.000Z"
}, "cpu_nanoseconds": 1410576880000000, "disk_usage": 20069460, "interface_public_rx_packets": 35771474, "interface_public_rx_bytes": 6023191691, "interface_public_rx_errors": 0, "interface_public_rx_drop": 0, "interface_public_tx_packets": 26004483, "interface_public_tx_bytes": 37293536055, "interface_public_tx_errors": 0, "interface_public_tx_drop": 0, "interface_private_rx_packets": 846833, "interface_private_rx_bytes": 63898435, "interface_private_rx_errors": 0, "interface_private_rx_drop": 0, "interface_private_tx_packets": 39, "interface_private_tx_bytes": 1638, "interface_private_tx_errors": 0, "interface_private_tx_drop": 0, "disk_primary_read_requests": 3280869, "disk_primary_read_bytes": 39818978304, "disk_primary_write_requests": 40331710, "disk_primary_write_bytes": 685420728320, "disk_swap_read_requests": 32, "disk_swap_read_bytes": 823808, "disk_swap_write_requests": 16, "disk_swap_write_bytes": 253952, "vcpu_nanoseconds_0": 470437920000000, "vcpu_nanoseconds_1": 344849460000000, "vcpu_nanoseconds_2": 342793890000000, "max_vcpus": 3}
I have the following query that groups information by day:
[ { "$match" : { "vm_id" : "1111223"}},
{ "$group" : {
"_id" : { "$dayOfMonth" : "$ts"},
"month" : { "$first" : { "$month" : "$ts"}},
"year" : { "$first" : { "$year" : "$ts"}},
"vm_id" : { "$first" : "$vm_id"},
"max_public_tx" : { "$max" : "$interface_public_tx_bytes"},
"public_tx_total" : { "$sum" : "$interface_public_tx_bytes"},
"public_rx_total" : { "$sum" : "$interface_public_rx_bytes"},
"private_tx_total" : { "$sum" : "$interface_private_tx_bytes"},
"private_rx_total" : { "$sum" : "$interface_private_rx_bytes"},
"count" : { "$sum" : 1}}
},
{ "$sort" : { "_id" : 1}}
]
So now I want to reduce it to hours for a particular day. I thought all I needed was to change the _id and add another item to $match such as {{"$dayOfMonth" : "$ts"} :1} for the first day of the month but MongoDb hated that some much it hung my IDE. What would be the proper $match query?
The query I'm working on currently:
[ { "$match" : { "vm_id" : "1111223",{ "$dayOfMonth" : "$ts"}: 1 }},
{ "$group" : {
"_id" : { "$hour" : "$ts"},
"day" : {"$first" : {"$dayOfMonth" : "$ts"}},
"month" : { "$first" : { "$month" : "$ts"}},
"year" : { "$first" : { "$year" : "$ts"}},
"vm_id" : { "$first" : "$vm_id"},
"max_public_tx" : { "$max" : "$interface_public_tx_bytes"},
"public_tx_total" : { "$sum" : "$interface_public_tx_bytes"},
"public_rx_total" : { "$sum" : "$interface_public_rx_bytes"},
"private_tx_total" : { "$sum" : "$interface_private_tx_bytes"},
"private_rx_total" : { "$sum" : "$interface_private_rx_bytes"},
"count" : { "$sum" : 1}}
},
{ "$sort" : { "_id" : 1}}
]
Upvotes: 3
Views: 3459
Reputation: 134
Use $gte and $lt operator in your match pipeline, it will use your index (if ts is in an index), so your match pipeline will be :
{ "$match" : { "vm_id" : "1111223","ts" : {$gte:ISODate('2013-11-01T00:00:00.000Z'), $lt:ISODate('2013-11-02T00:00:00.000Z') }}},
Complete query :
[{ "$match" : { "vm_id" : "1111223","ts" : {$gte:ISODate('2013-11-01T00:00:00.000Z'), $lt:ISODate('2013-11-02T00:00:00.000Z') }}},
{ "$group" : {
"_id" : { "$hour" : "$ts"},
"day" : {"$first" : {"$dayOfMonth" : "$ts"}},
"month" : { "$first" : { "$month" : "$ts"}},
"year" : { "$first" : { "$year" : "$ts"}},
"vm_id" : { "$first" : "$vm_id"},
"max_public_tx" : { "$max" : "$interface_public_tx_bytes"},
"public_tx_total" : { "$sum" : "$interface_public_tx_bytes"},
"public_rx_total" : { "$sum" : "$interface_public_rx_bytes"},
"private_tx_total" : { "$sum" : "$interface_private_tx_bytes"},
"private_rx_total" : { "$sum" : "$interface_private_rx_bytes"},
"count" : { "$sum" : 1}}
},
{ "$sort" : { "_id" : 1}}
]
Upvotes: 3