Reputation: 34398
I am creating a matrix from a Pandas dataframe as follows:
dense_matrix = np.array(df.as_matrix(columns = None), dtype=bool).astype(np.int)
And then into a sparse matrix with:
sparse_matrix = scipy.sparse.csr_matrix(dense_matrix)
Is there any way to go from a df straight to a sparse matrix?
Thanks in advance.
Upvotes: 61
Views: 83342
Reputation: 19
Solution:
import pandas as pd
import scipy
from scipy.sparse import csr_matrix
csr_matrix = csr_matrix(df.astype(pd.SparseDtype("float64",0)).sparse.to_coo())
Explanation:
to_coo
needs the pd.DataFrame
to be in a sparse format, so the dataframe will need to be converted to a sparse datatype: df.astype(pd.SparseDtype("float64",0))
After it is converted to a COO matrix, it can be converted to a CSR matrix.
Upvotes: 1
Reputation: 620
There is a way to do it without converting to dense en route:
csr_sparse_matrix = df.sparse.to_coo().tocsr()
Upvotes: 4
Reputation: 35265
df.values
is a numpy array, and accessing values that way is always faster than np.array
.
scipy.sparse.csr_matrix(df.values)
You might need to take the transpose first, like df.values.T
. In DataFrames, the columns are axis 0.
Upvotes: 74