Reputation: 387
I'm trying to automate a process that JMP does (Analyze->Distribution, entering column A as the "Y value", using subsequent columns as the "weight" value). In JMP you have to do this one column at a time - I'd like to use Python to loop through all of the columns and create an array showing, say, the median of each column.
For example, if the mass array is [0, 10, 20, 30], and the weight array for column 1 is [30, 191, 9, 0], the weighted median of the mass array should be 10. However, I'm not sure how to arrive at this answer.
So far I've
I'm not sure exactly where to go from here. Basically the "Y value" is a range of masses, and all of the columns in the array represent the number of data points found for each mass. I need to find the median mass, based on the frequency with which they were reported.
I'm not an expert in Python or statistics, so if I've omitted any details that would be useful let me know!
Update: here's some code for what I've done so far:
#Boilerplate & Import files
import csv
import scipy as sp
from scipy import stats
from scipy.stats import norm
import numpy as np
from numpy import genfromtxt
import pandas as pd
import matplotlib.pyplot as plt
inputFile = '/Users/cl/prov.csv'
origArray = genfromtxt(inputFile, delimiter = ",")
nArray = np.array(origArray)
dimensions = nArray.shape
shape = np.asarray(dimensions)
#Mask values ==0
maTest = np.ma.masked_equal(nArray,0)
#Create array of masses the same shape as the weights (nArray)
fieldLength = shape[0]
rowLength = shape[1]
for i in range (rowLength):
createArr = np.arange(0, fieldLength*10, 10)
nCreateArr = np.array(createArr)
massArr.append(nCreateArr)
nCreateArr = np.array(massArr)
nmassArr = nCreateArr.transpose()
Upvotes: 16
Views: 20262
Reputation: 879
Since this is the top hit on Google for weighted median in NumPy, I will add my minimal function to select the weighted median from two arrays without changing their contents, and with no assumptions about the order of the values (on the off-chance that anyone else comes here looking for a quick recipe for the same exact pre-conditions).
def weighted_median(values, weights):
i = np.argsort(values)
c = np.cumsum(weights[i])
return values[i[np.searchsorted(c, 0.5 * c[-1])]]
Using argsort
lets us maintain the alignment between the two arrays without changing or copying their content. It should be straight-forward to extend it to an arbitrary number of arbitrary quantiles.
Update
Since it may not be fully obvious at first blush exactly how easy it is to extend to arbitrary quantiles, here is the code:
def weighted_quantiles(values, weights, quantiles=0.5):
i = np.argsort(values)
c = np.cumsum(weights[i])
return values[i[np.searchsorted(c, np.array(quantiles) * c[-1])]]
This defaults to median, but you can pass in any quantile, or a list of quantiles. The return type is equivalent to what you pass in as quantiles
, with lists promoted to NumPy arrays. With enough uniformly distributed values, you can indeed approximate the input poorly:
>>> weighted_quantiles(np.random.rand(10000), np.random.rand(10000), [0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99])
array([0.01235101, 0.05341077, 0.25355715, 0.50678338, 0.75697424,0.94962936, 0.98980785])
>>> weighted_quantiles(np.random.rand(10000), np.random.rand(10000), 0.5)
0.5036283072043176
>>> weighted_quantiles(np.random.rand(10000), np.random.rand(10000), [0.5])
array([0.49851076])
Update 2
In small data sets where the median/quantile is not actually observed, it may be important to be able to interpolate a point between two observations. This can be fairly easily added by calculating the mid point between two values in the case where the weight mass is equally (or quantile/1-quantile) divided between them. Due to the need for a conditional, this function always returns a NumPy array, even when quantiles
is a single scalar. The inputs also need to be NumPy arrays now (except quantiles
that may still be a single number).
def weighted_quantiles_interpolate(values, weights, quantiles=0.5):
i = np.argsort(values)
c = np.cumsum(weights[i])
q = np.searchsorted(c, quantiles * c[-1])
return np.where(c[q]/c[-1] == quantiles, 0.5 * (values[i[q]] + values[i[q+1]]), values[i[q]])
This function will fail with arrays smaller than 2 (the original would handle non-empty arrays).
>>> weighted_quantiles_interpolate(np.array([2, 1]), np.array([1, 1]), 0.5)
array(1.5)
Note that this extension is fairly unlikely to be needed when working with actual data sets where we typically have (a) large data sets, and (b) real-valued weights that make the odds of ending up exactly at a quantile edge very long, and probably due to rounding errors when it does happen. Including it for completeness nonetheless.
Upvotes: 16
Reputation: 456
I ended up writing that function based on @muzzle and @maesers replies:
def weighted_quantiles(values, weights, quantiles=0.5, interpolate=False):
i = values.argsort()
sorted_weights = weights[i]
sorted_values = values[i]
Sn = sorted_weights.cumsum()
if interpolate:
Pn = (Sn - sorted_weights/2 ) / Sn[-1]
return np.interp(quantiles, Pn, sorted_values)
else:
return sorted_values[np.searchsorted(Sn, quantiles * Sn[-1])]
The difference between interpolate True and False is as follows:
weighted_quantiles(np.array([1, 2, 3, 4]), np.ones(4))
> 2
weighted_quantiles(np.array([1, 2, 3, 4]), np.ones(4), interpolate=True)
> 2.5
(there is no difference for uneven arrays such as [1, 2, 3, 4, 5])
Speed tests show it is just as performant as @maesers' function in the uninterpolated case, and it is twice as performant in the interpolated case.
Upvotes: 2
Reputation: 323
wquantiles is a small python package that will do exactly what you need. It just uses np.cumsum() and np.interp() under the hood.
Upvotes: 5
Reputation: 387
Sharing some code that I got a hand with. This allows you to run stats on each column of an excel spreadsheet.
import xlrd
import sys
import csv
import numpy as np
import itertools
from itertools import chain
book = xlrd.open_workbook('/filepath/workbook.xlsx')
sh = book.sheet_by_name("Sheet1")
ofile = '/outputfilepath/workbook.csv'
masses = sh.col_values(0, start_rowx=1) # first column has mass
age = sh.row_values(0, start_colx=1) # first row has age ranges
count = 1
mass = []
for a in ages:
age.append(sh.col_values(count, start_rowx=1))
count += 1
stats = []
count = 0
for a in ages:
expanded = []
# create a tuple with the mass vector
age_mass = zip(masses, age[count])
count += 1
# replicate element[0] for element[1] times
expanded = list(list(itertools.repeat(am[0], int(am[1]))) for am in age_mass)
# separate into one big list
medianlist = [x for t in expanded for x in t]
# convert to array and mask out zeroes
npa = np.array(medianlist)
npa = np.ma.masked_equal(npa,0)
median = np.median(npa)
meanMass = np.average(npa)
maxMass = np.max(npa)
minMass = np.min(npa)
stdev = np.std(npa)
stats1 = [median, meanMass, maxMass, minMass, stdev]
print stats1
stats.append(stats1)
np.savetxt(ofile, (stats), fmt="%d")
Upvotes: 0
Reputation: 13539
What we can do, if i understood your problem correctly. Is to sum up the observations, dividing by 2 would give us the observation number corresponding to the median. From there we need to figure out what observation this number was.
One trick here, is to calculate the observation sums with np.cumsum. Which gives us a running cumulative sum.
Example:
np.cumsum([1,2,3,4]) -> [ 1, 3, 6, 10]
Each element is the sum of all previously elements and itself. We have 10 observations here. so the mean would be the 5th observation. (We get 5 by dividing the last element by 2).
Now looking at the cumsum result, we can easily see that that must be the observation between the second and third elements (observation 3 and 6).
So all we need to do, is figure out the index of where the median (5) will fit.
np.searchsorted does exactly what we need. It will find the index to insert an elements into an array, so that it stays sorted.
The code to do it like so:
import numpy as np
#my test data
freq_count = np.array([[30, 191, 9, 0], [10, 20, 300, 10], [10,20,30,40], [100,10,10,10], [1,1,1,100]])
c = np.cumsum(freq_count, axis=1)
indices = [np.searchsorted(row, row[-1]/2.0) for row in c]
masses = [i * 10 for i in indices] #Correct if the masses are indeed 0, 10, 20,...
#This is just for explanation.
print "median masses is:", masses
print freq_count
print np.hstack((c, c[:, -1, np.newaxis]/2.0))
Output will be:
median masses is: [10 20 20 0 30]
[[ 30 191 9 0] <- The test data
[ 10 20 300 10]
[ 10 20 30 40]
[100 10 10 10]
[ 1 1 1 100]]
[[ 30. 221. 230. 230. 115. ] <- cumsum results with median added to the end.
[ 10. 30. 330. 340. 170. ] you can see from this where they fit in.
[ 10. 30. 60. 100. 50. ]
[ 100. 110. 120. 130. 65. ]
[ 1. 2. 3. 103. 51.5]]
Upvotes: 8