Reputation: 3383
I am researching on speed of factorial. But I am using two ways only,
import timeit
def fact(N):
B = N
while N > 1:
B = B * (N-1)
N = N-1
return B
def fact1(N):
B = 1
for i in range(1, N+1):
B = B * i
return B
print timeit.timeit('fact(5)', setup="from __main__ import fact"), fact(5)
print timeit.timeit('fact1(5)', setup="from __main__ import fact1"), fact1(5)
Here is the output,
0.540276050568 120
0.654400110245 120
From above code I have observed,
My question is,
Is the best way to find the factorial in python ?
Upvotes: 3
Views: 2968
Reputation: 2555
I have tried with reduce(lambda x, y: x*y, range(1, 5))
>>>timeit("import math; math.factorial(4)")
1.0205099133840179
>>>timeit("reduce(lambda x, y: x*y, range(1, 5))")
1.4047879075160665
>>>timeit("from operator import mul;reduce(mul, range(1, 5))")
2.530837320051319
Upvotes: 0
Reputation: 19030
Otherwise, if you're looking for a Python implementation (this is my favourite):
from operator import mul
def factorial(n):
return reduce(mul, range(1, (n + 1)), 1)
Usage:
>>> factorial(0)
1
>>> factorial(1)
1
>>> factorial(2)
2
>>> factorial(3)
6
>>> factorial(4)
24
>>> factorial(5)
120
>>> factorial(10)
3628800
Performance: (On my desktop:)
$ python -m timeit -c -s "fact = lambda n: reduce(lambda a, x: a * x, range(1, (n + 1)), 1)" "fact(10)"
1000000 loops, best of 3: 1.98 usec per loop
Upvotes: 1
Reputation: 304195
TLDR; microbenchmarks aren't very useful
For Cpython, try this:
>>> from math import factorial
>>> print timeit.timeit('fact(5)', setup="from __main__ import fact"), fact(5)
1.38128209114 120
>>> print timeit.timeit('fact1(5)', setup="from __main__ import fact1"), fact1(5)
1.46199703217 120
>>> print timeit.timeit('factorial(5)', setup="from math import factorial"), factorial(5)
0.397044181824 120
But under pypy, the while
is faster than the one from math
>>>> print timeit.timeit('fact(5)', setup="from __main__ import fact"), fact(5)\
0.170556783676 120
>>>> print timeit.timeit('fact1(5)', setup="from __main__ import fact1"), fact1\
(5)
0.319650173187 120
>>>> print timeit.timeit('factorial(5)', setup="from math import factorial"), f\
actorial(5)
0.210616111755 120
So it depends on the implementation. Now try bigger numbers
>>>> print timeit.timeit('fact(50)', setup="from __main__ import fact"), fact(50)
7.71517109871 30414093201713378043612608166064768844377641568960512000000000000
>>>> print timeit.timeit('fact1(50)', setup="from __main__ import fact1"), fact1(50)
6.58060312271 30414093201713378043612608166064768844377641568960512000000000000
>>>> print timeit.timeit('factorial(50)', setup="from math import factorial"), factorial(50)
6.53072690964 30414093201713378043612608166064768844377641568960512000000000000
while
is in last place, and the version using for
is about the same as the one from the math
module
Upvotes: 4
Reputation: 309929
If you're looking for the best, why not use the one provided in the math module?
>>> import math
>>> math.factorial
<built-in function factorial>
>>> math.factorial(10)
3628800
And a comparison of timings on my machine:
>>> print timeit.timeit('fact(5)', setup="from __main__ import fact"), fact(5)
0.840167045593 120
>>> print timeit.timeit('fact1(5)', setup="from __main__ import fact1"), fact1(5)
1.04350399971 120
>>> print timeit.timeit('factorial(5)', setup="from math import factorial")
0.149857997894
We see that the builtin is significantly better than either of the pure python variants you proposed.
Upvotes: 12