Reputation: 513
My Setup: Python 2.7.4.1, Numpy MKL 1.7.1, Windows 7 x64, WinPython
I tried to implement the Sequential Minimal Optimization algorithm for solving SVM. I use maximal violating pair approach.
In working set selection procedure i want to find maximum value of gradient and its index for elements which met some condition, y[i]*alpha[i]<0 or y[i]*alpha[i]
#y - array of -1 and 1
y=np.array([-1,1,1,1,-1,1])
#alpha- array of floats in range [0,C]
alpha=np.array([0.4,0.1,1.33,0,0.9,0])
#grad - array of floats
grad=np.array([-1,-1,-0.2,-0.4,0.4,0.2])
GMaxI=float('-inf')
GMax_idx=-1
n=alpha.shape[0] #usually n=100000
C=4
B=[0,0,C]
for i in xrange(0,n):
yi=y[i] #-1 or 1
alpha_i=alpha[i]
if (yi * alpha_i< B[yi+1]): # B[-1+1]=0 B[1+1]=C
if( -yi*grad[i]>=GMaxI):
GMaxI= -yi*grad[i]
GMax_idx = i
This procedure is called many times (~50000) and profiler shows that this is the bottleneck. It is possible to vectorize this code?
Edit 1: Add some small exemplary data
Edit 2: I have checked solution proposed by hwlau , larsmans and Mr E. Only solutions proposed Mr E is correct. Below sample code with all three answers:
import numpy as np
y=np.array([ -1, -1, -1, -1, -1, -1, -1, -1])
alpha=np.array([0, 0.9, 0.4, 0.1, 1.33, 0, 0.9, 0])
grad=np.array([-3, -0.5, -1, -1, -0.2, -4, -0.4, -0.3])
C=4
B=np.array([0,0,C])
#hwlau - wrong index and value
filter = (y*alpha < C*0.5*(y+1)).astype('float')
GMax_idx = (filter*(-y*grad)).argmax()
GMax = -y[GMax_idx]*grad[GMax_idx]
print GMax_idx,GMax
#larsmans - wrong index
neg_y_grad = (-y * grad)[y * alpha < B[y + 1]]
GMaxI = np.max(neg_y_grad)
GMax_ind = np.argmax(neg_y_grad)
print GMax_ind,GMaxI
#Mr E - correct result
BY = np.take(B, y+1)
valid_mask = (y * alpha < BY)
values = -y * grad
values[~valid_mask] = np.min(values) - 1.0
GMaxI = values.max()
GMax_idx = values.argmax()
print GMax_idx,GMaxI
Output (GMax_idx, GMaxI)
0 -3.0
3 -0.2
4 -0.2
After checking all solutions, the fastest one (2x-6x) is solution proposed by @ali_m. However it requires to install some python packages: numba and all its prerequisites.
I have some trouble to use numba with class methods, so I create global functions which are autojited with numba, my solution look something like this:
from numba import autojit
@autojit
def FindMaxMinGrad(A,B,alpha,grad,y):
'''
Finds i,j indices with maximal violatin pair scheme
A,B - 3 dim arrays, contains bounds A=[-C,0,0], B=[0,0,C]
alpha - array like, contains alpha coeficients
grad - array like, gradient
y - array like, labels
'''
GMaxI=-100000
GMaxJ=-100000
GMax_idx=-1
GMin_idx=-1
for i in range(0,alpha.shape[0]):
if (y[i] * alpha[i]< B[y[i]+1]):
if( -y[i]*grad[i]>GMaxI):
GMaxI= -y[i]*grad[i]
GMax_idx = i
if (y[i] * alpha[i]> A[y[i]+1]):
if( y[i]*grad[i]>GMaxJ):
GMaxJ= y[i]*grad[i]
GMin_idx = i
return (GMaxI,GMaxJ,GMax_idx,GMin_idx)
class SVM(object):
def working_set(self,....):
FindMaxMinGrad(.....)
Upvotes: 5
Views: 3029
Reputation: 74154
You can probably do quite a lot better than plain vectorization if you use numba
to JIT-compile your original code that used nested loops.
import numpy as np
from numba import autojit
@autojit
def jit_max_grad(y, alpha, grad, B):
maxgrad = -inf
maxind = -1
for ii in xrange(alpha.shape[0]):
if (y[ii] * alpha[ii] < B[y[ii] + 1]):
g = -y[ii] * grad[ii]
if g >= maxgrad:
maxgrad = g
maxind = ii
return maxind, maxgrad
For comparison, here's Mr E's vectorized version:
def mr_e_max_grad(y, alpha, grad, B):
BY = np.take(B, y+1)
valid_mask = (y * alpha < BY)
values = -y * grad
values[~valid_mask] = np.min(values) - 1.0
GMaxI = values.max()
GMax_idx = values.argmax()
return GMax_idx, GMaxI
Timing:
y = np.array([ -1, -1, -1, -1, -1, -1, -1, -1])
alpha = np.array([0, 0.9, 0.4, 0.1, 1.33, 0, 0.9, 0])
grad = np.array([-3, -0.5, -1, -1, -0.2, -4, -0.4, -0.3])
C = 4
B = np.array([0,0,C])
%timeit mr_e_max_grad(y, alpha, grad, B)
# 100000 loops, best of 3: 19.1 µs per loop
%timeit jit_max_grad(y, alpha, grad, B)
# 1000000 loops, best of 3: 1.07 µs per loop
Update: if you want to see what the timings look like on bigger arrays, it's easy to define a function that generates semi-realistic fake data based on your description in the question:
def make_fake(n, C=4):
y = np.random.choice((-1, 1), n)
alpha = np.random.rand(n) * C
grad = np.random.randn(n)
B = np.array([0,0,C])
return y, alpha, grad, B
%%timeit y, alpha, grad, B = make_fake(100000, 4)
mr_e_max_grad(y, alpha, grad, B)
# 1000 loops, best of 3: 1.83 ms per loop
%%timeit y, alpha, grad, B = make_fake(100000, 4)
jit_max_grad(y, alpha, grad, B)
# 1000 loops, best of 3: 471 µs per loop
Upvotes: 3
Reputation: 363487
If you change B
from a list
to a NumPy array, you can at least vectorize the yi * alpha_i< B[yi+1]
and push the loop inwards:
GMaxI = float('-inf')
GMax_idx = -1
for i in np.where(y * alpha < B[y + 1])[0]:
if -y[i] * grad[i] >= GMaxI:
GMaxI= -y[i] * grad[i]
GMax_idx = i
That should save a bit of time. Next up, you can vectorize -y[i] * grad[i]
:
GMaxI = float('-inf')
GMax_idx = -1
neg_y_grad = -y * grad
for i in np.where(y * alpha < B[y + 1])[0]:
if neg_y_grad[i] >= GMaxI:
GMaxI= -y[i] * grad[i]
GMax_idx = i
Finally, we can vectorize away the entire loop by using max
and argmax
on -y * grad
, filtered by y * alpha < B[y + 1]
:
neg_y_grad = (-y * grad)
GMaxI = np.max(neg_y_grad[y * alpha < B[y + 1]])
GMax_idx = np.where(neg_y_grad == GMaxI)[0][0]
Upvotes: 2
Reputation: 2200
Here you go:
y=np.array([-1,1,1,1,-1,1])
alpha=np.array([0.4,0.1,1.33,0,0.9,0])
grad=np.array([-1,-1,-0.2,-0.4,0.4,0.2])
C=4
filter = (y*alpha < C*0.5*(y+1)).astype('float')
GMax_idx = (filter*(-y*grad)).argmax()
GMax = -y[GMax_idx]*grad[GMax_idx]
No benchmark tried, but it is pure numerical and vectorized so it should be fast.
Upvotes: 2
Reputation: 32511
I think this is a fully vectorized version
import numpy as np
#y - array of -1 and 1
y=np.array([-1,1,1,1,-1,1])
#alpha- array of floats in range [0,C]
alpha=np.array([0.4,0.1,1.33,0,0.9,0])
#grad - array of floats
grad=np.array([-1,-1,-0.2,-0.4,0.4,0.2])
BY = np.take(B, y+1)
valid_mask = (y * alpha < BY)
values = -yi * grad
values[~valid_mask] = np.min(values) - 1.0
GMaxI = values.max()
GMax_idx = values.argmax()
Upvotes: 3