Reputation: 1856
I have some legacy-era code at work that takes in a double-pointer and allocates memory to it. A shortened example of it would look something like this:
struct LegacyObj
{
int a;
double b;
};
void LegacyAllocator(LegacyObj** ppObj)
{
*ppObj = (LegacyObj*)malloc(sizeof(LegacyObj));
}
void LegacyDeleter(LegacyObj** ppObj)
{
free(*ppObj);
}
The actual LegacyAllocator function is ~100 lines and mixes reading from files with creating a linked list of LegacyObj pointers, and isn't something I'd be able to get away with rewriting right now. I would like, however, to make the use of this function a bit safer, avoiding any memory leaks that may occur from exceptions &tc. The first solution I came up with was to wrap it up in a class and handle calling the legacy functions in the ctor/dtor.
class RAIIWrapper
{
public:
RAIIWrapper()
:obj{nullptr}
{
::LegacyAllocator(&obj);
}
RAIIWrapper(RAIIWrapper&& that)
: obj{ that.obj}
{
that.obj = nullptr;
}
RAIIWrapper& operator=(RAIIWrapper&& that)
{
RAIIWrapper copy{std::move(that)};
std::swap(obj, copy.obj);
return *this;
}
~RAIIWrapper ()
{
::LegacyDeleter(&obj);
}
private:
LegacyObj* obj;
};
But I'm curious - is there a way to do this using std::shared_ptr
or std::unique_ptr
? I've not been able to come up with a solution without having to keep the original pointer passed to LegacyAllocator around.
Upvotes: 6
Views: 384
Reputation: 23600
You can create a factory function for unique_ptr
s like this:
typedef void(* LegacyDeleterType)(LegacyObj*);
typedef std::unique_ptr<LegacyObj,LegacyDeleterType> UniqueLegacyPtr;
UniqueLegacyPtr makeUniqueLegacyObj()
{
LegacyObj * p = nullptr;
LegacyAllocator( &p );
return UniqueLegacyPtr( p, [](LegacyObj*p){ LegacyDeleter(&p); } );
}
You can now use that to create unique_ptr
s and you can also assign to shared_ptr
s which capture the custom deleter automatically at construction:
int main()
{
auto unique = makeUniqueLegacyObj();
std::shared_ptr<LegacyObj> shared = makeUniqueLegacyObj();
}
Upvotes: 0
Reputation: 55524
Yes, you can use a custom deleter with std::unique_ptr
or std::shared_ptr
, for example:
struct Deleter {
void operator()(LegacyObj *p) const {
LegacyDeleter(&p);
}
};
std::unique_ptr<LegacyObj, Deleter> MakeLegacyObj() {
LegacyObj *p = 0;
LegacyAllocator(&p);
return std::unique_ptr<LegacyObj, Deleter>(p);
}
std::unique_ptr<LegacyObj, Deleter> p = MakeLegacyObj();
And, as correctly pointed out by @Dave, this works with shared_ptr
too:
std::shared_ptr<LegacyObj> p = MakeLegacyObj();
Upvotes: 3
Reputation: 101446
You can use unique_ptr
to delete the memory, but you'll have to provide a custom Deleter
class since the memory is allocated using malloc
rather than new
.
Better yet, change the allocation code to use new
instead and just use unique_ptr
. If you go down this road you can just have the allocator return a unique_ptr
instead of a pointer to the memory.
Assuming you need to provide your own custom deleter, here is one way you might do it:
template <typename T>
class MallocDeleter
{
public:
void operator() (T* obj) const
{
LegacyDeleter (*obj);
}
};
typedef std::unique_ptr <LegacyObj, MallocDeleter <LegacyObj>> unique_legacy_ptr;
You could also probably provide a make_unique_legacy
type function which allocates by calling LegacyAllocator
, instead of having to initialize the unique_ptr
yourself.
Upvotes: 0